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Abstract: In cultivated landscapes, grasslands are an important land use type for insect life. Grass-
land management practices can have a significant impact on insect ecology. For example, intense
fertilization and frequent cutting can reduce the diversity and abundance of insects by destroying
their habitat and food sources. Thus, the quality of grassland habitat for insect development depends
on its management intensity. The intensification of grassland production is discussed as one factor
contributing to the decline in insect biomass over recent decades. Characterizing grassland changes
over time provides one piece to the larger puzzle of insect decline. We analyzed landscape-level
trends in grassland biomass near Orbroich and Wahnbachtal in North Rhine-Westphalia, Germany,
over a 25-year period. In both areas, pronounced insect biomass decline had been observed. More
than 430 Landsat images were used. An image normalization process was developed and employed
to ensure that observed changes over time were attributed to grassland changes and not systemic
changes inherent within image time series. Distinct clusters of grassland parcels were identified
based on intensity and temporal changes in biomass using Normalized Difference Vegetation Index
(NDVI) as an indicator. Cluster separability was confirmed using the Transform Divergence method.
The results showed clusters having periods of distinct trends in vegetation biomass, indicating
changes in grassland agronomic and/or management practices over time (e.g., fertilization, increased
silage production). Changes in management practices coincided with regional trends in cultivation
as documented by official statistics. We demonstrated the feasibility of using 100+ images over
multiple decades to perform a long-term remote sensing analysis examining grassland change. These
temporally expansive and spatially detailed trends of grassland change can be included as factors
in the multi-variate analysis of insect decline. The methodology can be applied to other geographic
areas. Such improved insights can support informed landscape design and cultivation patterns in
relation to insect ecology and the broader context of biodiversity enhancement.

Keywords: grassland change; Landsat; image normalization; clustering; insect decline

1. Introduction

Managed and unmanaged grasslands provide a variety of ecosystem services [1,2],
including provisioning services (forage production), regulating services (water and soil
erosion control, agricultural pest control, soil preservation, climate stability, regulation of
disease-carrying organisms, fresh water supply, flood mitigation, night cooling, and carbon
sequestration), supporting services (cycling and movement of nutrients), and cultural
services (aesthetic beauty). With respect to insect ecology and observed insect decline [3–5],
grasslands are vital for providing forage for herbivores and pollinators (e.g., seeds, nectar,
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pollen, leaves, stems, and roots), supporting habitats for insect development, and main-
taining biodiversity in general. For example, in semi-natural grasslands, 25 wild plant
species per 100 cm2 can be found with an associated rich invertebrate fauna community [6].
Insect ecology and grassland management are inextricably linked. Insects are pollinators,
predators, decomposers, and food sources for other animals. They also help to regulate soil
and water quality.

Agriculturally oriented grasslands are usually of reduced quality with respect to
wild plant species depending on the intensity of fertilizing, plowing, re-seeding, cutting,
and controlling weeds. In some cases, the original wild-plant communities have been
replaced by sown monocultures of cultivated varieties of grasses and clovers such as
perennial ryegrass and white clover (wikipedia.org, accessed on 15 June 2023). Trends
toward intensification can be a result of changes in farming types, for example, from dairy
pasture to silage production for livestock fodder or for biomass generation for biogas
plants. Local changes in grassland management can lead to reduced grassland diversity at
a landscape scale, negatively affecting regional insect diversity, abundance, and biomass.
Statistics on agricultural practices at a national (e.g., www.destatis.de, www.nass.usda.
gov) or pan-national level (e.g., https://ec.europa.eu/eurostat) can serve as a proxy for
grassland intensification analysis [7,8]. However, given the importance of grasslands to
insect ecology and overall ecosystem health, improved measurement and assessment of
grassland status at the regional and local scales are required. Corresponding systems
for recent monitoring using remote sensing are currently under development at e.g., the
European Space Agency, (http://esa-sen4cap.org) and the National Ecological Observatory
Network (https://www.neonscience.org/).

A historic satellite imagery analysis provides a core technology to investigate the
possible role of local grassland cultivation changes in relation to long-term insect biomass
decline [5]. We propose that annualized Normalized Difference Vegetation Index (NDVI)
is a suitable proxy for annual grassland vegetation biomass with the assumption that
increasing annual biomass correlates with increased grassland cultivation intensity. NDVI
was designed to assess rangeland quality in the western region of the US [9,10] and has
been used extensively since. Subsequent studies have utilized various remote sensing
sensors (e.g., AVHRR, MODIS, Landsat, etc.) to continuously reinforce the use of NDVI for
area estimations of biomass (among many other vegetative measurements) in grassland
assessments [11–16].

The primary aim of the current study was to characterize trends in grassland biomass
change in areas where pronounced insect decline had been observed [5]. To this end, the
specific methodologic objectives of this study were to (1) determine if available imagery
could be assembled and normalized to identify trends in grassland vegetation biomass over
a 25-year period utilizing established approaches, (2) show that appropriate clustering of a
parcel scale vegetation index (VI) could identify separable groups that illustrate differing
changes in grassland management over time, and (3) place the interpretation of time series
grassland changes into a context of local anthropogenic influences. The outcomes of the
study are intended to provide input for the multi-factor analysis of insect decline. To our
knowledge, this is the first study to develop long-term remote sensing land use change
detection applied to grassland intensity for the purpose of informing insect decline research.
In addition, the image normalization process applied to 100+ images is a novel combination
of several established remote sensing techniques to achieve our specific study goals.

An overview of the major steps included in this article is shown in Figure 1.

www.destatis.de
www.nass.usda.gov
www.nass.usda.gov
https://ec.europa.eu/eurostat
http://esa-sen4cap.org
https://www.neonscience.org/
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Figure 1. Overview of study objectives and major steps outlined in this article.

2. Materials and Methods

Two study sites were selected within the federal state of North Rhine-Westphalia
in Germany to explore long-term changes in grassland vegetation and management us-
ing historical satellite imagery over a 25-year period. These sites were centered on sev-
eral insect biomass sampling sites reported in [5] and were identified in communication
with a representative of the entomological society Krefeld (Martin Sorg, pers. comm.,
https://www.entomologica.org, accessed on 20 October 2023). Grassland parcels were
characterized using several vegetation indices with the intent to cluster similar grassland
parcels into groups showing distinct annual total biomass and temporal trends.

https://www.entomologica.org
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2.1. Study Sites

The first site is located in the northwest portion of Orbroich, including portions of
Krefeld, a city of roughly 225,000 people on the western side of the Rhine River. The area
within the Orbroich site is a mixture of developed areas along with arable land, grassland,
open water, and forested areas. The second site covers Wahnbachtal approximately 25 km
southeast of Cologne. Compared to the Orbroich site, the study site in Wahnbachtal contains
a less densely populated, undulating landscape with small towns and includes more woods
and natural grassland. The characterization of grassland change at the Wahnbachtal site
was of particular interest as agricultural land use was dominated by grasslands (17% of
agricultural area and 47% of agricultural parcels, Table S1). The spatial extent of both study
sites is defined by a 10 km radius which is centered on an individual insect trap location
from [5], encompassing approximately 315 km2 (Figure 2).
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Figure 2. Orbroich and Wahnbachtal study areas and starting land cover polygons.

A spatial delineation of land cover parcels was performed via visual identification and
classification based on high-resolution aerial imagery. Orbroich data were digitized from
64 aerial imagery tiles (10 cm resolution) from 2012/2013 obtained from Bezirksregierung
Köln (https://www.bezreg-koeln.nrw.de/, accessed on 10 June 2020), with a focus on non-
developed land area (i.e., densely developed areas were not the focus of parcel digitization).
A total of 17,711 parcels comprising 18,944 ha were identified as 1 of 31 land classifications
using three levels of categorization (Table S1). This study area utilized four agricultural
grassland classes of meadow, meadow-orchard, silage, and other grassland as well as the
neglected grassland (in total comprising 15.8% of the total parcel area (4234 parcels)). Other
natural land cover classes (2130 parcels) comprised 1.4% of the total parcel area. Arable
agriculture was the dominant land cover comprising 74.5% of the parcel area (Table S1).

https://www.bezreg-koeln.nrw.de/
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Wahnbachtal parcels were digitized in May 2020 from high-resolution basemap imagery
within ESRI’s ArcGIS Online platform. Parcel digitization for Wahnbachtal was focused
on grassland only (Figure S2). This resulted in 3256 parcels comprising 7548 ha with an
average parcel size of 2.3 ha (Table S2).

Grassland polygons were subsequently reviewed to remove parcels that were too
small or narrow for appropriate characterization based on a 30 m resolution of the satellite
imagery. This selection process only included polygons with a minimum size of 0.4 ha
and an area-to-perimeter ratio >10 (which eliminated the long narrow and oddly shaped
polygons). The remaining polygons were buffered inward by 30 m to reduce the potential
for mixed pixels to be included in the analysis and rasterized in alignment with the
satellite imagery (Figure S3). After this pre-processing of the input parcels, a final set of
grassland polygons remained composed of 818 polygons for Orbroich and 1367 polygons
for Wahnbachtal.

2.2. Satellite Imagery Selection

Archive imagery from the NASA/USGS Landsat program (https://landsat.gsfc.nasa.
gov/, accessed on 12 March 2020) was reviewed to identify potentially suitable images from
the Thematic Mapper (TM) sensor covering some or all of the study site area in the time
period of 1989 through 2013 (Orbroich) or 2015 (Wahnbachtal). Given the extended length
of this analysis, imagery from Landsat 4, 5, 7, and 8 were all considered as potential sources,
with images from Landsat 5, 7, and 8 selected. TM image data are composed of seven core
spectral bands starting with Landsat 4 (although more bands were added to subsequent
satellites) ranging from visible blue (0.45–0.52 µm) to short-wave infrared (2.08–2.35 µm) at
a 30 m ground resolution. These data also include a thermal band (10.40–12.50 µm) at a
60 m resolution that was not used in our analysis.

The presence of clouds during image acquisition impedes the usefulness for optical
image analysis as clouds and haze (and their associated shadows) can drastically affect the
reflection of some electromagnetic wave energy from the surface of the earth. Images were
divided into quadrants and filtered based on a ruleset where images exceeding a threshold
of cloud cover were removed from consideration during the review process. In total,
166 Level-1 images (i.e., raw digital numbers (DNs) and not atmospherically corrected)
were selected and downloaded for the Orbroich site and 266 images for the Wahnbachtal
site. The number of images available across years and seasons varied (Table S3). A detailed
assessment of image quality was performed, including georeferencing accuracy/image-
to-image registration, a more detailed cloud cover assessment, and overall spectral data
quality. Details of this assessment are provided in Supplementary Materials.

2.3. Image Normalization

To obtain the best results when comparing spectral information received at the sen-
sor across different acquisition dates, the data should be converted from their original
digital number format into a meaningful physical unit (e.g., percent reflectance). This
type of conversion process, often referred to as radiometric calibration, allows for these
remotely sensed data to be compared across both time and space. Other studies have
used an image normalization process in lieu of radiometric calibration [17–19] to achieve
image comparability across time and space. Due to the data volume and the potential for
unverifiable error in generating radiometrically calibrated data from models reliant on
historic atmospheric information over 25 years, this study implemented a robust method
to normalize the data for spatiotemporal comparability. The process minimizes differences
from one date to another due to atmospheric variations (e.g., sun elevation, sun intensity,
atmospheric attenuation) on different dates of acquisition.

This image normalization involved the creation of a mask that included features
with little or no spectral variation over time (i.e., non-vegetation features such as asphalt,
concrete, roofs, water, bare soil) within a base image. Spectral information from the same
features in a second image was compared to that of the base image using a feature space

https://landsat.gsfc.nasa.gov/
https://landsat.gsfc.nasa.gov/
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plot displaying three dimensions of information: (1) the base image spectral band values on
the y-axis; (2) the second image spectral band values on the x-axis; and (3) the color-ramped
plot of pixel frequency (Figure S4). From these plots, a linear regression for each spectral
band was developed from the soil/static feature line that passed through the feature space
plot using the ordinary least squares (OLS) method. The band-specific linear regressions
were used to scale all pixels in the second image to the base image in order to normalize
the data, enabling a pixel-to-pixel comparison across time and space. Figure 3 illustrates
this approach where NIR pixel values from locations of multi-date static features in a base
image (April) and non-base image (August) were combined in a feature space plot, with
the generated linear regression. The regression equation, along with similarly generated
regressions for the green, red, and mid-infrared (MIR) bands, was applied to all pixels
in the August image to normalize the data for any differences in atmospheric conditions
between acquisition dates.
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normalize an August image to an April base image (feature space plot for near-infrared (NIR) band).

To accomplish this normalization for hundreds of images, a two-stage method was
implemented. In stage one, a single image from each year (light orange column in Figure S5)
was normalized to a master base image (April 1989, dark orange in Figure S5) to minimize
interannual variation and produce a base image for each year of the study adjusted to 1989.
The annual image selected for normalization was most consistent in time of year with the
master base image, ranging from March to June, with the majority coming from April. In
the second stage, images were normalized for all months within a single year to the base
image of that year to minimize the intra-year variation of static features (e.g., each row
in Figure S5). The application of this methodology resulted in a 25-year chronology of
166 (Orbroich) or 266 (Wahnbachtal) images where the variation of spectral information
within each parcel was, as much as possible, due to potential changes in land use. Further
details of this methodology are provided in Supplementary Materials.

2.4. Vegetation Indices

Vegetation indices (VIs) use the characteristics of two or more bands of wave energy
reflecting from vegetation surfaces in which reflection/absorption is influenced by physical
aspects such as plant structure, pigment type, nutrient deficiencies, and moisture content.
Many VIs include the red visible wavelengths (strongly absorbed by plant chlorophyll)
and the near-infrared wavelengths (unaffected by chlorophyll but highly reflected in a
healthy plant structure). The difference in response to vegetation in these two wavelengths
has been used for nearly 50 years to monitor vegetation health. There is a long history of
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using NDVI for vegetation-related studies [9,10], and many use NDVI as an indicator of
vegetation biomass [11–16,20–23]. Additional VIs were considered for use in this study
(see Supplementary Materials); however, NDVI was chosen because of the long and well
documented history of this vegetation index.

NDVI was calculated for each pixel in each grassland parcel for every image date
(multiple images per year over multiple years). Parcel-wide statistics were computed
(mean, minimum, maximum, standard deviation, and count) to address within-parcel
variation and used as the basis for the subsequent clustering process. Individual date and
mean annual NDVI statistics were computed for each year.

2.5. Grassland Parcel Clustering

To identify patterns of biomass change indicated by NDVI, grassland parcels were
grouped into a distinct set of clusters using a k-means minimum distance algorithm. This
iterative process using NDVI statistics resulted in four clusters of grassland polygons
for Orbroich and five clusters in Wahnbachtal. The parcels in the clusters were grouped
based on the clustering algorithm’s mathematical principle of minimizing the within-class
variation, while at the same time maximizing the between-class variation. The test of cluster
uniqueness was verified through separability analysis using Transformed Divergence
(TD) [24].

There are a variety of factors related to climate and surface-level conditions that may
introduce temporary, short-term changes in reflectance values captured by satellite imagery
that may be inconsistent with the long-term trajectory. For example, a drought during
one year would reduce vegetation vigor (lower NDVI) and biomass compared to the
previous or subsequent year. Likewise, a particularly cold or warm winter could influence
the timing and amount of vegetation during springtime. To address these year-to-year
variations that may confound trend analysis, the mean NDVI for all clusters was computed
for each year, and a linear model was used to generate the residual from the mean for
each combination (Figure 4). This residual adjustment was applied to each individual
cluster/year combination [25] (Figure S6). The adjustment for single-year events affecting
annual biomass allowed for a clearer picture of temporal trends between clusters.
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Additional sub-clustering was completed on the set of five clusters from Wahnbachtal
to determine if subclasses existed that could potentially reveal valuable temporal trends in
grassland characteristics. The subcluster analysis typically violates the assumptions related
to separability [26]; however, sub-clustering can often reveal interesting patterns that can
add value to trend analyses. To further explore the influence of averaging the NDVI values
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for a grassland parcel over 12 months, a base-image (spring/early summer) NDVI clustering
process was performed. Methods and results are reported in Supplementary Materials.

3. Results

A total of 818 grassland parcels encompassing 1655 ha were grouped into four distinct
clusters for the Orbroich study site, with parcel counts per cluster ranging from 123 to
340 (15.5% to 43.2% of total grassland area). In Wahnbachtal, five clusters were identified
for the 1367 grassland parcels (5083 ha), with parcel counts per cluster ranging from 65 to
598 (4.8% to 43.7% of total grassland area) (Table 1). The separability of clusters was
confirmed using TD measurements between cluster pairs, where results of 1900 or larger
indicate a high separability between cluster pairs [26]. The Orbroich site had an average
TD of 1958 (only one of the six pairwise combinations was <1900); the Wahnbachtal site
had an average TD of 1962, and all pairwise comparisons were greater than 1900, except
one combination (Table 1). This indicates that the majority of individual clusters were
statistically separable (TD > 1900) from one another based on their temporal patterns in VI
values. The exceptions to very high separability were in cluster pair 3:4 in Orbroich and
cluster pair 4:5 in Wahnbachtal. Even these values (1802 and 1621, respectively) could be
considered to have adequate separability based on [27] who used a threshold of 1700 as
good separation and 1500 as adequate. In both cases, these cluster pairs represented similar
temporal patterns of consistently high NDVI values over the course of the study period but
allowed for the separation from the other clusters. An additional analysis of the resulting
clusters and separability is provided in the SI. An evaluation using TD was also performed
on alternate VIs investigated (see Table S5 in Supplementary Materials).

Table 1. Grassland cluster characteristics and Transform Divergence (TD) separability metrics for
each cluster pair (e.g., 1:2) for Orbroich and Wahnbachtal study sites.

Orbroich Wahnbachtal

Cluster Count Area (ha) % of
Grassland Area

Separability
(Pairs) (TD) Count Area (ha) % of

Grassland Area
Separability
(Pairs) (TD)

1 123 257 15.5
1:2-1984
1:3-2000
1:4-2000

67 251 4.9

1:2-2000
1:3-2000
1:4-2000
1:5-2000

2 139 281 17.0 2:3-1964
2:4-2000 109 424 8.0

2:3-2000
2:4-1996
2:5-2000

3 216 401 24.2 3:4-1802 65 240 4.8 3:4-2000
3:5-2000

4 340 716 43.2 528 1956 38.6 4:5-1621

5 n/a n/a n/a 598 2212 43.7

Total 818 1655 Avg = 1958 1367 5083 Avg = 1962

NDVI results for each cluster are composed of 25 annual values based on the average
of the grassland parcels within the cluster for that year (Figure S6, left). Large-scale events
occurring in one year that may cause a shift in vegetation compared to other years (e.g.,
drought, early warm weather) were smoothed using a linear regression that was calculated
from the average of all clusters for each year (Figures 5 and S6, middle). The difference
between the average of all clusters for each year relative to the linear regression equation
was used to adjust each cluster’s original yearly value. This was performed for each
NDVI cluster value for each year to generate the final annual NDVI values for each cluster
(Figures 5 and S6, right).
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Figure 5. Time series plots of annual biomass (NDVI) of Orbroich grassland parcels into four clusters
from 1989 to 2013.

Figure 5 displays the temporal sequence of annual mean NDVI for each cluster of
grassland polygons in Orbroich, where three distinct patterns emerge in grassland biomass
(as described by NDVI). Clusters 3 and 4 (orange and purple) remain fairly constant over
25 years although at different NDVI levels. Cluster 2 (light green) starts to increase in
biomass in the mid-1990s, reaching the levels of Clusters 3 and 4 around year 2000. Cluster
1 (dark green) remains fairly constant until the early 2000s and then increases to almost
the level of the other clusters by 2013. Based on these trends, the diversity of grassland
conditions could be considered to have decreased within the 25 years as described by the
narrowing NDVI (biomass) range between clusters.

Similar patterns can be observed in Wahnbachtal (Figure 6), with the two highest
NDVI clusters (4 and 5, orange and purple) remaining fairly constant between 1989 and
2015. A trend that is not present in the Orbroich site is Cluster 3 (blue). This cluster
has a constant high NDVI similar to Clusters 4 and 5 until about year 2000, but it has a
period of decline to 2010 and then tracks closely with Cluster 1 (dark green). Parcels in
Cluster 2 (light green) exhibit increasing biomass starting in the early 1990s and match the
high-biomass clusters around 2005. Cluster 1 (dark green) remains relatively constant up
to about 2005 and then increases to 2015.

The time series plots for each site are comparable in their temporal patterns; however,
caution should be used when comparing NDVI values across sites. Each of the two study
sites used a different 1989 base image for normalization; therefore, these were independent
analyses of the clusters’ temporal trends.

An additional analysis of all Wahnbachtal clusters was performed using a sub-clustering
approach to explore further temporal trends within the main clusters. For example, the
analysis of two highly separable clusters (TD = 2000) in Wahnbachtal (Clusters 2 and 3, light
green and blue) revealed additional temporal patterns indicating that each of the resulting
subclusters initiates changes in NDVI at different time periods (Figure 7). All subclusters
followed the same increasing or decreasing trend as the primary cluster over the 25 years;
however, the timing of the increase or decrease differed between the subclusters.
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Figure 7. Sub-clustering of Wahnbachtal Clusters 2 (light green) and 3 (blue) showing that overall
trends are similar between subclusters and parent clusters, but the timing of the biomass changes
differs within the subclusters.

An analysis of within-cluster variability over time was performed by plotting the
standard deviation of the annual average NDVI for all grassland polygons within a clus-
ter for each year. This demonstrated that cluster variability (i.e., standard deviation of
individual grassland parcel NDVI values) was low and stayed consistent for Clusters
3 and 4, decreased for Cluster 2, and was high but somewhat variable for Cluster 1 for
Orbroich (Figure S9). For Wahnbachtal, cluster variability was also low for Clusters 4 and
5, increasing for Clusters 1 and 3, and decreasing for Cluster 2 (Figure S10). An increase
in total parcel biomass coupled with a decrease in biomass variability within a cluster
over time (e.g., Cluster 2 in both Orbroich and Wahnbachtal) indicates lower spatial and
temporal diversity. This could be the result of the increasing management intensification of
grassland habitats in these areas, with possible related reductions in insect abundance.
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4. Discussion

We identified four distinct clusters of grassland parcels with biomass trends over
25 years for the Orbroich site. While two clusters remained relatively constant at high
NDVI levels, the other two clusters showed marked increases in annual vegetation biomass
over time, reaching or nearing the “constant” clusters by 2013. For the two increasing
biomass clusters, the starting year of increase occurred at different times. By 2013, grassland
conditions were less diverse compared to 1989. Several anthropogenic factors may be re-
lated to these increases. There has been a decrease in dairy farming in the area coupled with
an increase in silage production [28]. This shift from extensively managed grassland (i.e.,
dairy pasture) to intensive silage grassland may in part explain the trends identified. Addi-
tionally, the number of biogas generation plants increased significantly between 2000 and
2017 with the Renewable Energy Sources Act [28]. Across Germany, the area of silage
maize for biogas increased by approximately 700,000 ha between 2007 and 2018 [28,29],
which overlaps the timeframe of the increasing NDVI of Cluster 1 for both Orbroich and
Wahnbachtal. Grasses and other silage crops are more intensively managed to generate
additional biomass for conversion to biogas.

In Wahnbachtal, five clusters were identified with two clusters having a relatively
constant annual average biomass, two clusters with an increasing biomass, and one cluster
with a decreasing trend (Figure 5). A preliminary evaluation examined generalized changes
in grassland parcels over time using Google Earth time series imagery. This evaluation
indicated that Clusters 1 and 3 were a temporal mixture of grassland and arable uses over
the time period. Cluster 1 primarily had early changes from arable to intense grassland
uses and Cluster 3 parcels changed from early grassland use to mixed use (e.g., silage,
arable, grassland combinations). The parcels in the two temporally constant clusters (4 and
5) have likely been continual pasture and/or meadow (hay) uses over the time period with
no mix of arable crops during those years. Parcels examined in Cluster 2 (which had a
large increase in biomass over time) also had little or no mixing with arable uses; however,
the intensity of grassland use increased over time (e.g., change from pasture to intense
meadow (hay) or silage production). This cluster also included some parcels permanently
changed from arable to grassland within the 25-year window (but not fluctuating back
and forth). Cultural changes in this area from 1989 to 2015 include the addition of nearby
biogas plants and an increase in recreational horse riding and farming. These factors may
affect grassland management practices to intensify biomass production for biogas or silage.

Although distinct clusters of grassland parcels with clear trends over time were
observed, there were additional factors influencing the results that should be considered.
These factors are listed below and discussed in Supplementary Materials:

• Designation/definition of grassland polygons;
• Satellite image selection and pre-processing;
• Satellite image normalization;
• Use of NDVI as a proxy for biomass;
• Temporal aspects of metrics for grassland parcel characterization;
• Within-cluster similarity.

The integration of more than one hundred satellite images spanning several decades
into a single spectrally normalized time series and the subsequent analysis method used
are not limited to the specific locations presented here. This investigation on grassland
change and local insect abundance is transferable and can be applied to other geographic
regions. This could include other locations observed in the insect study of [3–5], and other
studies [30]. However, the interpretation of the temporal trends and their correlation to
environmental changes in the landscape will differ depending on the area being studied.
In addition, more specific grassland intensification indicators can be derived and applied
to assess (bio)diversity loss related to intensification and monoculturalization at larger
geographic regions, such as those used as foundational information to reach future sus-
tainability goals (e.g., EU Green Deal (https://ec.europa.eu/info/strategy/priorities-2019
-2024/european-green-deal_en, accessed on 26 July 2023) and EU Farm-to-Fork (https://

https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://ec.europa.eu/info/strategy/priorities-2019-2024/european-green-deal_en
https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
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ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf, ac-
cessed on 26 July 2023)).

5. Conclusions

Long-term trends in grassland change were identified in areas where pronounced
insect biomass decline had been observed [5]. The temporal trends indicate the value
of long-term satellite image-based trend analysis by grouping grassland change types
(e.g., continual grassland, intensifying grassland, arable/grassland mix) and highlighting
individual areas (e.g., parcels) for a further detailed change analysis specific to study goals.
Additional conclusions include:

(1) We successfully demonstrated the ability to appropriately combine (i.e., normalize) up
to 200 images across 25 years to perform a long-term remote sensing analysis.

(2) Our approach identified separable clusters of grassland parcels.
(3) The identified clusters represented different groups of grassland parcels with constant

or varying agronomic or management practices over time. These temporally expansive
and spatially detailed trends of grassland change could be included as factors in multi-
variate investigations into insect decline. Insights from these improved techniques
are also critical for the informed design of future land use and cultivation patterns in
relation to insect ecology and in the broader context of biodiversity enhancement.

(4) Changes in management practices coincided with regional trends in cultivation change
as documented by official statistics [29]. A preliminary local detailed analysis using
historical aerial imagery revealed improved understandings about grassland man-
agement and land use change patterns. Specifically, the analysis revealed mixed
cultivation patterns including arable crops and grassland silage which coincided with
the construction of a local biogas plant. A further detailed local analysis could be
accompanied by aerial imagery investigation, field observation, and farmer interviews.

(5) The methodology presented here can be applied to long-term studies in other geo-
graphic areas and temporal periods.

(6) Grasslands and insects have a mutually beneficial relationship. Grasslands provide
essential habitat and resources for insects, while insects play a vital role in main-
taining the health and productivity of grassland ecosystems. The trend analysis
presented herein provides informative approaches and important insights to analyze
and document long-term changes of the quantitative and qualitative status of grass-
land ecosystem services. Such studies are decisive for an informed analysis of the
insect decline phenomenon and other important environmental aspects related to
(bio)diversity loss.

Areas of future study could include the following to refine the process or to gain
additional information:

(1) The inclusion of additional factors such as rainfall and temperature in the normaliza-
tion across time to remove the influence of “out-of-the-ordinary” factors that affect
vegetation growth for that point in time.

(2) Further investigation on the influence of applying several levels of averaging (i.e.,
parcel, annual, cluster) to the biomass estimations using NDVI. Exploration of the
sensitivity to varying numbers and timing of satellite images used as input, including
a more in-depth review of seasonal windows.

(3) Development of imagery analysis workflows and quality assessment to enable easy-
to-use grassland change analysis in other geographic areas (web-/server-based) as a
module in multi-factor insect decline research.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/app132212467/s1, Figure S1: Source land cover polygons
for Orbroich; Figure S2: Source land cover polygons for Wahnbachtal; Figure S3: Examples of 30 m in-
ward buffering of grassland polygons to reduce heterogeneity due to mixed pixels at edges; Figure S4:
Determining normalization equation for a single image and single spectral band (Near InfraRed);

https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
https://ec.europa.eu/food/system/files/2020-05/f2f_action-plan_2020_strategy-info_en.pdf
https://www.mdpi.com/article/10.3390/app132212467/s1
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Figure S5: Two-stage method of image normalization showing the master base image (dark orange)
and base images for each year (light orange), and within-year images normalized to the base image
for that year (each row) for the Orbroich study site; Figure S6: Grassland clusters (left) with temporal
adjustment to account for annual factors affecting entire areas (center) resulting in final annual NDVI
values for each cluster (right) in Orbroich (top) and Wahnbachtal (bottom); Figure S7: Comparison of
clustering using all available images across each year (A) and only the spring base image (B) for the
Orbroich site; Figure S8: Statistical analysis of cluster; Figure S9: Cluster variability for Orbroich site
using the standard deviation of individual grassland parcel NDVI values for each year; Figure S10:
Cluster variability for Wahnbachtal site using the standard deviation of individual grassland parcel
NDVI values for each year; Table S1: Source LULC polygon classes, levels, numbers and total area
for Orbroich; Table S2: Source grassland polygon statistics for Wahnbachtal; Table S3: Year, season
and number of images used in analysis for Orbroich and Wahnbachtal sites; Table S4: Correlation of
various vegetation indices (Vis) considered for the study; Table S5: Evaluation of cluster separability
of selected VIs using transformed divergence; Parcel classes used for grassland analysis are in bolded
black font; Table S6: Comparison of cluster assignments using NDVI, MSI, and TVI vegetation
indices for Orbroich and Wahnbachtal sites showing agreement between methods in grey shaded
cells. References [9,10,31–33] are cited in the Supplementary Materials.
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