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INTRODUCTION

» (Grasslands support essential biodiversity and ecosystem services and are threatened by
climate change and land use intensification

* Monitoring grasslands and characterizing the management practices implemented
(biomass, cutting frequency, grazing intensity, etc.) can reveal key information related to

the integrity and ECO|Ogica| health Of theSe SYStemS Type=mixedgras/andarab/e
» To increase the spatial extent of grasslands monitored and temporal resolution of monitoring, we Summarized spectral | Extracted spectral values (satellite | Random forest is a non-parametric Models used to predict
utilized remotely sensed satellite imagery to characterize intensity and usage of grasslands Information across the growing data) for each grassland field/parcel| decision tree classifier (Liaw & rassland t fp h
o . season related to the health and Parcels with assigned type are used to Wiener, 2002). Satellite imagery grassiand type for the
* 4 years of satellite imagery (growing season, March — October) ohysical attributes of vegetation train model (~400) and training data were used as remaining ~5,600 parcels/fields
* Over 6,000 grassland parcels in Wahnbachtal, Germany captured by satellite images j model inputs.

 Thresholding techniques were applied to the satellite images to estimate the cutting frequency
of each grassland field/parcel for each year

ﬁESULTS

. ite | | hrough time an rain model redict th :
The satellite images were summarlze.d through time and used to train models to predict the Cutting Frequency Grassland Type
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: g S Fe Sl O Mixed Grassland Field was used for both purposes over different Multispectral Instrument (MSI)

S e SRR Y Arable seasons; high use intensity - 88% of parcels were cut 3 or more times each growing season - 88% of the parcels were predicted to be silage fields

| WAHNBACHTAL Mix‘;?I:ga;ture gf:ﬁ:gzy;xztgk and contains foiled hay balls QD - Validation has not been performed yet. However, the published «  Mixed grasslanc(j) arable, mixed pasture silage, and pasture made
LR e Dt Grazed by cattle/livestock. categorized by th | methods integrated into this approach had accuracies that up the other 12% of parcels
dasture raze cattie/livestoCK, categorize e : : . : e : .

X k A —_— fayrm I & Y 10m, 20m, & 60m spatial resolution ranged between 60 - 80% (De Vroey et al., 2021; Lobert et al., « Patterns in class prediction reflect patterns in training data
Lo\ ) = ) Silage Foiled hay balls for silage process (different Level-2A (Surface Reflectance) 2021)- Further validation is ideal * Model training accuracies were consistent across years, ranging
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Vegetation Vigor (Multispectral) Surface Roughness (Radar) | Threshold : Combine Re:su“s for C““':"g Freq“‘?“cy \ « Remotely sensed satellite imagery can be leveraged to inform « Web applications to guide in-situ monitoring and
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‘W | ] )8 » Grassland Type model has room to improve by balancing number of
. . : Y 2 j é ‘% 5 samples between classes and additional training data
Spectral index related to the health or Surface roughness determined through Applied value thresholds to satellite images to | =1 method detected cut | = both detected cut A .p | .g o
vigor of vegetation; grassland microwave backscatter; After cutting a isolate individual cutting events throughout the The average of the two methods used to estimate » Testing the thresholds and models against an independent validation
fleld/pa_rcel values dec_rease | fleldlparcel, backscatter values sharply growing season. Thresholds are based on the the number of cuts for a given grassland parcel. dataset would be ideal | Paghboard development and
immediately after cutting or mowing increase, followed by a decrease expected vegetation response after a cutting event. Methods adapted from De Viroey et al., 2021 and Lobert et al., 2021 | ArcGIS Online visualization created by Karl Schad
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