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Abstract: Persistent global urbanization has a direct relationship to measurable artificial light at
night (ALAN), and the Defense Meteorological Satellite Program has served an important role in
monitoring this relationship over time. Recent studies have observed significant declines in insect
abundance and populations, and ALAN has been recognized as a contributing factor. We investigated
changes in nightlight intensity at various spatial scales surrounding insect traps located in Orbroicher
Bruch Nature Reserve, Germany. Using a time series of global nighttime light imagery (1992–2010),
we evaluated pixel-level trends through linear regressions and the Mann–Kendall test. Paired with
urban land cover delineation, we compared nightlight trends across rural and urban areas. We
utilized high-resolution satellite imagery to identify landscape features potentially related to pixel-
level trends within areas containing notable change. Approximately 96% of the pixel-level trends had
a positive slope, and 22% of pixels experienced statistically significant increases in nightlight intensity.
We observed that 80% of the region experienced nightlight intensity increases >1%, concurrent with
the observed decline in insect biomass. While it is unclear if these trends extend to other geographic
regions, our results highlight the need for future studies to concurrently investigate long-term trends
in ALAN and insect population decline across multiple scales, and consider the spatial and temporal
overlaps between these patterns.

Keywords: nighttime lights; DMSP-OLS; data fusion; urbanization processes; insect decline; artificial
light at night

1. Introduction

A decline in insect abundance and populations has been observed across many regions
in recent decades [1,2]. Previous studies measuring insect biomass through insect traps
have found significant declines in biomass through long-term, multiyear observations [2–4].
Owens et al. [1] suggest that the combination of climate change, habitat loss, chemical
pollutants, invasive species, and artificial light at night (ALAN) are key factors driving
insect decline. Approximately 30% of vertebrates and 60% of invertebrates across the world
are nocturnal [5]. Light is an important factor for many key behavioral and biological
processes of insects. They rely on nocturnal light for navigation, avoiding predation,
foraging, reproduction, and regulating their biological clocks [1,2], and ALAN has been
observed to affect these biological processes (Owens et al., 2020). ALAN has been identified
as a factor directly contributing to declines in moth populations and other insects with
strong phototactic responses [5,6]. Additionally, ALAN has been observed to influence the
community composition of aquatic primary producers [2].

The increases in ALAN have been primarily attributed to human settlements and the
process of urbanization. ALAN is widespread and has been increasing over the last decades
worldwide at an annual rate of 2–6%, imposing an unprecedented alteration of natural
light regimes [2,5]. The impacts of ALAN are not limited to the immediate surroundings
of the light source. More remote areas can be affected by light pollution [1,2] through
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skyglow [7,8], which can reach dozens of kilometers beyond the original source [9,10] and
the effects are amplified by overcast skies [11]; therefore, even nature reserves and other
protected areas are not always shielded from ALAN pollution [12]. Given the average
increasing rate of ALAN worldwide, the effects of ALAN on declining insect populations
should be further investigated at local and regional spatial scales [7].

The Defense Meteorological Satellite Program Operational Linescan System (DMSP-
OLS) satellites detect low levels of electromagnetic radiation emitted at night at wavelengths
within the visible and near-infrared (VNIR) portion of the electromagnetic spectrum, span-
ning 0.5 nm–0.9 nm [13–15]. Documented sources of nightlight emission include city lights,
gas flares, and wildfires [13–15]. Previous studies have found that nightlight imagery can
be used to map urban areas since spatiotemporal patterns in nightlight intensity corre-
spond to patterns in modern human settlements [13,15,16]. Artificial lights at night have
also been used to develop indicators of economic productivity [17]. In Europe, trends in
ALAN over time captured by DMSP-OLS satellites have been related to specific landscape
changes [18]; increases in ALAN have generally been attributed to suburban and industrial
development, and decreases related to energy efficiency improvements and periods of
economic decline [18].

Increases in ALAN at different scales can impact trophic interactions [19], ecological
functions [2,20], and alter biodiversity [20,21]. Some studies have emphasized the need
to consider and manage ALAN within protected areas [12,22]. The impacts of ALAN on
populations, communities, and ecosystems vary across regions and spatial scales. Previous
studies utilizing remotely sensed imagery and landscape ecology concepts have found
that ALAN has significantly reduced the areas considered to be suitable habitat (lacking
nighttime light pollution) and has negatively impacted biodiversity within natural re-
serves [12]. ALAN impacting protected nature reserves is a globally observed phenomenon.
Fan et al. [23] suggest that biodiversity data should be paired with nightlight satellite im-
agery to investigate the effects of light pollution and optimize buffer distances surrounding
protected areas. The impacts of lighting on ecosystems vary based on the economic and
social contexts, suggesting that the optimal buffer distance around protected areas differs
for each unique scenario [23,24]. There is not a one-size-fits-all solution for optimizing the
configuration of light pollution, anthropogenic structures, and their proximity to nature
reserves, presenting the need to consider all relevant factors in landscape planning.

In this study, we investigated changes in nightlight intensity captured by satellite
imagery at varying radii (1, 2, and 10 km) surrounding the two insect trap locations in the
Orbroicher Bruch Nature Reserve in Germany utilized by Hallmann et al. [4]. First, we
tested trends in ALAN between 1992 and 2010, using global nightlight intensity satellite
imagery to investigate pixel-level changes using linear regressions and the Mann–Kendall
test. Paired with an urban land cover designation from CORINE (2012) and high-resolution
satellite imagery, we compared trends of nightlight intensity through time across rural and
urban areas. Within areas where we identified significant changes in nightlight intensity,
we attributed the specific alterations on the land surface as potential causes or contribut-
ing factors to the change using a combination of aerial imagery, historical records, and
expert knowledge. By pairing the timeframe of change with specific surface features, we
outline a methodology that highlights specific landscape changes to consider as potential
contributors to insect decline in future investigations. We present a novel investigation of
observed insect decline and nightlight satellite imagery corresponding to the time period
and geographic region [4]. These methods have the potential to be further developed
and refined to assess the efficacy of nightlight mitigation efforts, identify structures with
significant impacts on nightlight pollution, consider the effects of changes from smaller
intense light and wider area diffuse light, and further support landscape management
decisions in the context of insect conservation.
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2. Materials and Methods
2.1. Study Area and Time Period

Within North Rhine-Westfalia, Germany we examined the landscape within a 10 km
radius surrounding two insect trap locations (Figure 1) to investigate changes in nightlight
intensity between 1992 and 2010. The total area spans roughly 318 km2, and overlaps with
11 municipalities, although the majority of the study area is comprised of Krefeld, Kempen,
Rheurdt, Tönisvorst, Kerken, and Neukirchen-Vluyn. The traps are located near Krefeld
within Orbroicher Bruch, which is a nature reserve. Nature reserves are a class of protected
areas under Germany’s Federal Nature Conservation Act primarily used to facilitate species
conservation. Orbroicher Bruch covers roughly 1 km2 of protected forest, wet grasslands,
and marshes. The surrounding region is comprised of cropland, forest, grasslands, and
urban areas. The population of North Rhine-Westphalia has grown from approximately
17.1 million in 1989 (source) to 17.9 million in 2010 (retrieved from data commons timelines
based on Europa.eu, measurement method = Eurostat regional population data). Previous
studies using satellite imagery to model land cover have estimated that impervious surfaces
from urban development have increased by roughly 30% (1670 km2) between 1985 and
2017 in North Rhine-Westphalia [25].
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Bruch Nature Reserve in North Rhine-Westphalia, Germany.
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2.2. Remote Sensing Data (DMSP-OLS Nighttime Lights Time Series)

We gathered a time series of satellite images between 1992 and 2010 of Global Night-
Time Light intensity [Version 4] captured by the DMSP-OLS at a 30 arc-second spatial
resolution (roughly 1.5 km × 0.9 km at 51.4◦ N) (Figure 2) (data retrieved from https:
//ngdc.noaa.gov/eog/dmsp/downloadV4composites.html, accessed on 20 April 2022).
We selected the DMSP-OLS satellite imagery since it provided global data measuring
nightlight intensity corresponding to our time period of interest. Images covering the
10 km radius region surrounding the Orbroicher Bruch Nature Reserve were acquired
from seven DMSP-OLS satellites (F10, F11, F12, F14, F15, F16, and F18) to capture the full
19-year period. This dataset contains annual, cloud-free composites of light intensity at
night and has been processed to remove sunlit images, moonlit images, images containing
glare, as well as any light features from the aurora in the Northern hemisphere [15,26].
In years where two annual composites were available because two satellites collected
overlapping data, we selected a single composite collected by one satellite for the given
year to maintain consistency with the years with only one composite. We selected the stable
lights average band within this dataset, which covers cities, towns, and other regions with
perpetual light emission; these data are provided in digital numbers and have been filtered
for background noise from other sources of VNIR emissions (e.g., gas flares) [15,26]. Since
the DMSP-OLS does not have on-board calibration, it is not feasible to compare digital
numbers across multiple years without additional processing [27]. Therefore, we performed
an intercalibration of DMSP-OLS images using the software GRASS GIS (Version 7.4) based
on the coefficients and approach of Wu et al. [27].
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Figure 2. Methodological workflow for processing DMSP-OLS data, analyzing pixel-level trends
using linear regressions and the Mann–Kendall test, and refining the CORINE dataset to reflect urban
and rural land cover. Combining the trend analyses with the urban/rural land cover classes served
as the basis for investigating temporal and spatial trends at various scales. Further integrating aerial
imagery, expert knowledge, and historical records provided a framework for attributing local changes
in nightlight intensity to specific landscape features.

2.3. Remote Sensing Trend Analysis

We assessed spatial and temporal trends in nightlight intensity values from the cali-
brated DMSP-OLS time series at the individual pixel scale to identify significant changes in
nightlight intensity over time (Figure 2). To identify trends, we estimated linear regressions
on a pixel-level basis and examined the regression slope within each pixel. We selected the
Mann–Kendall statistical test for use in this analysis as a non-parametric test for environ-
mental time series data, to measure the direction and strength of monotonic, pixel-level
trends. We used R [V 3.4.3] to estimate linear regressions and apply the Mann–Kendall
test using the “Kendall” package [V 2.2] [28–31]. The results from the Mann–Kendall
test include Kendall’s tau statistic, which indicates trend strength and direction, as well
as a two-sided p-value to determine the statistical significance of the monotonic trends.

https://ngdc.noaa.gov/eog/dmsp/download V4composites.html
https://ngdc.noaa.gov/eog/dmsp/download V4composites.html
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Kendall’s tau statistic ranges from –1 to 1, where positive or negative values closer to zero
are less significant, and values closer to −1 or 1 exhibit stronger trends, with the sign
indicating the directionality of the trend.

We applied this methodology to the full time period (1992–2010) as well as the early
(1992–1999) and late (2003–2010) time periods we defined to analyze the differences between
the beginning and end of the investigation period. For the subset of annual images captured
within both the early and late time periods, the median nightlight intensity value was
calculated for each pixel. Additionally, we calculated the relative difference between the
early and late time periods for each pixel to identify substantial changes in nightlight
intensity in areas where values did not fall on the extreme ends of the spectrum. The full
time period of interest captured the overall trend, whereas the comparisons between the
early and late time periods allowed us to compare regional changes in nightlight intensity.

2.4. Urbanization Analysis

In order to explore potential causes of change in nightlight intensity, we first character-
ized land use and land cover (LULC) across our study area, since urbanization coincides
with increasing nightlight intensity (Figure 2). We utilized the CORINE land cover dataset
from 2012 (data retrieved from https://land.copernicus.eu/pan-european/corine-land-
cover/clc-2012, accessed on 4 May 2022) to delineate urban and rural areas within the
full study area. We selected all areas defined as continuous (1.1.1) and discontinuous
urban fabric (1.1.2), construction sites (1.3.3), dump sites (1.3.2), as well as industrial or
commercial units (1.2.1) to represent urban land cover. Port areas (1.2.3) and airports (1.2.4)
were not present within the study region, while green urban areas (1.4.1) and sport and
leisure facilities (1.4.2) were not included in the urban areas we defined since they contain
vegetation cover. All areas that did not meet these criteria were classified as rural (i.e., not
urban); rural areas included farmland, water, forests, and other land cover classes, although
many of these areas may contain sparse or patchy developed areas (human features).

To connect this classification with the nightlights time series imagery, a grid represent-
ing the individual pixels of the nightlight’s dataset was intersected with the rural/urban
land cover classification, and pixels were designated as urban or rural based on the majority
type (≥50% of the given pixel). We summarized the total area of pixels classified as rural
and urban across the full study area for 2012. In addition, we compared the pixel-level
trends in nightlight intensity (from linear regressions based on the early and late time
periods and the Mann-Kendall test across the full study period) between the pixels clas-
sified as urban and rural to characterize patterns occurring within these contrasting land
cover types.

2.5. Change Attribution

We utilized pixel-level statistics to identify temporal and spatial trends in nightlight in-
tensity indicative of landscape feature changes, and to describe potential agents or features
contributing to the pixel-level trend (Figure 2). Within the full time period (1992–2010), we
used the Mann–Kendall test to identify pixel-level instances of relative, significant local and
regional changes in nightlight intensity within 1, 2, and 10 km radii around the insect trap
locations. Within the 1 and 2 km radii, we considered all pixels at each scale, and identified
all potentially relevant features that had changed; we chose to examine all surrounding
features at these scales due to the effects that direct lighting can have on insect habitats and
nature preserves. We also examined the 10 km radius (full study area) to identify regional
changes in nightlight intensity; it is important to consider this scale based on the range
of insect movement, insect metapopulation dynamics, and because nightlight pollution
(indirect effects) can span many kilometers, especially with overcast skies. Within the 10 km
radius, we selected two subsets of pixels that met specific criteria to further explore local,
feature-based changes. The first group of pixels (ID’s 1–10) had a slope > 0 and R2 > 0.3
based on the linear trend analysis; they also had a relative early to late difference (between
1992–1999 and 2003–2010) > 0 and statistically significant change (α < 0.1). The second

https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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group of pixels that was further investigated (ID’s 11–17) had high slope values >0.86.
These pixels were not selected based on any level of alpha significance or any particular
R2 value.

At each spatial scale considered, we utilized historical aerial imagery to investigate sub-
pixel features (Figure 2). Historical imagery collected through the North Rhine-Westphalia
aerial photography catalog was provided by the District Government of Cologne, and
captured in 1989 (start of the study period) at a 40 × 40 cm spatial resolution and in 2013
(end of the study period) at a 10 × 10 cm spatial resolution. Chronological aerial imagery
from Google Earth was also used to supplement the identification of changes that took
place during the study period. Features of interest identified via aerial imagery were
further verified by incorporating expert knowledge and relevant, supporting documenta-
tion (Figure 2). External expert knowledge included a local landscape photographer, Paul
Maaßen, and community officials in Krefeld. Identifying specific features that changed
based on historical aerial imagery, and supporting these findings with external knowl-
edge and documentation, provided the framework for relating these landscape features to
observed trends in nightlight intensity.

While the spatial resolution of the DMSP-OLS time series data is coarser than the
landscape features investigated, we also considered that a variety of sub-pixel spatial
configurations of landscape features could contribute to the pixel-level trend. For example,
a pixel with a one percent increase in nightlight intensity has many potential spatial
configurations, as displayed in Figure A1. A single hectare that experienced a 100 percent
increase in nightlight intensity, or 20 hectares that experienced a five percent increase in
nightlight intensity, are both potential spatial configurations of the generalized pixel-level
trend (one percent increase). The variety of sub-pixel spatial configurations responsible
for pixel-level trends is an influential factor that was considered throughout the process of
evaluating and attributing changes to specific landscape features.

3. Results
3.1. Image (Pre-)Processing

Nightlight intensity values from DMSP-OLS V4 image collections are stored as digital
numbers which are the raw values captured at the sensor corresponding to the intensity
of reflectance. The original digital numbers range from 1 to 63, from lowest to highest
intensity; the stable lights average composites were processed to remove the temporary
events causing background noise, and these values were replaced with 0. Areas completely
covered by clouds are represented by the value 255. After intercalibration of the images
using the invariant region method [27], the digital numbers of the nightlight intensity
values are rescaled, as shown in Figure 3 (ranging from 1 to 100+). In both the uncalibrated
and calibrated DMSP-OLS time series images, pixel regions with the greatest nightlight
intensity (highest values, shown in yellow) generally correspond with urban areas. The
areas with the brightest nightlight can be identified in the southeastern portion of the study
area in Figure 3b, which geographically corresponds to the areas classified as urban in
Figures 1 and 4.
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Figure 4. Classification of rural (blue) and urban (transparent) areas based on the 2012 CORINE land
cover data within a 10 km buffer around the insect trap locations. Urban classification is based on the
reassignment of urban classes from the original CORINE dataset and their spatial relationships to
city administrative units. The majority of the study area was classified as rural.

3.2. Nightlight Trend Analysis
3.2.1. Overall Trends

The linear regression estimation and Mann–Kendall test revealed comparable relation-
ships between increasing urbanization and increasing intensity values. Across the full time
series (1992–2010, DMSP-OLS), we observed a general increase in nightlight intensity that
was more prominent within localized clusters (Figure 5), likely reflecting development and
urbanization patterns. Approximately 22% of the region demonstrated statistically signifi-
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cant (α < 0.1) trends in nightlight intensity based on the Mann–Kendall test, and 13.4% of
the region had statistically significant trends of increasing or decreasing nightlight intensity
over the 19-year period at α < 0.05 (Table A1). Based on the Mann–Kendall tau statistic,
many of the statistically significant changes in nightlight intensity were clustered in the
northwest of the study area (Figure 5). Decreases in nightlight intensity were only observed
in 13 of the 590 (3%) pixels covering the region (also indicated by the Mann–Kendal tau
statistic) (Figure 5).
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Median nightlight intensity in the early and late time periods are shown in
Figures 6 and A2. Between the early and late time periods, the mean pixel-level change in
nightlight intensity across the region was an increase of 7%, with a maximum increase of
47% and decrease of −17% (Figure 7). We also evaluated the number of pixels that exceeded
varying thresholds (1, 5, 10, and 25%) of nightlight intensity increase between the two time
periods. We generally observed that 80% of pixels exceeded the 1% threshold in nightlight
intensity between the early and late time periods (Figure 8). A general trend of increasing
lighting was observed across the majority of the study area. The pixels that exceeded the
5% and 10% nightlight intensity increase thresholds corresponded with urbanization and
varying degrees of new settlement or development (Figure 8). However, only 4% of the
study area experienced greater than a 25% increase in nightlight intensity, and this was
attributed to intensive land use changes in these areas, with high lighting requirements
related to industry and greenhouses (Figure 8). The nightlight intensity thresholds ex-
ceeded by a given pixel between the early and late time periods depend on the amount of
existing urban development present and the initial observation of intensity in the early time
period, implying that change is relative to each pixel (Figure 7). The magnitude of change
observed is multifactorial, and we further explored the types of infrastructure and spatial
configuration of land use changes corresponding to the observed trends in Section 3.3.
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Figure 8. Proportion of pixel increases in nightlight intensity exceeding various percent change
thresholds observed between the early (1992–1999) and late (2003–2010) time periods.

3.2.2. Urban/Rural

Through historical, fine-resolution aerial imagery, we visually identified an increase
in urban land cover between 1989 and 2013. Approximately 82% of the region (out of
the 590 pixels) was classified as rural, and inversely, 18% of the region was classified as
urban in 2012 (Table A2). The predominant categorization across the region (10 km radius)
was classified as rural, and overall, we observed a more prominent increase in nightlight
intensity within these rural areas compared to urban areas (Figure 9). Most significant
changes in nightlight intensity (Mann–Kendall p-values, α < 0.05) were related to increases
that occurred within rural areas (Figures 4 and 5). A larger proportion of the study area
classified as rural had positive Mann–Kendall tau values and corresponded to statistically
significant increases in nightlight intensity (p-values, α < 0.05), while a smaller proportion
of urban areas experienced statistically significant increases. Our results from the Mann–
Kendall test revealed some pixels with negative tau values, indicating nightlight intensity
decreases (3% of the region) corresponding to urban areas.
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3.3. Change Attribution
3.3.1. Nightlight Intensity Changes within 1 km and 2 km Radii

The change attribution findings were reported as part of a descriptive analysis, and
features were visually identified using historical aerial imagery from 1989 and 2013. Within
the 1 km radius and immediate surroundings of the trap locations, there was a minor
increase in nightlight intensity; however, the single pixel overlapping the actual trap
locations retained relatively low absolute nightlight intensity (Figure A3), as expected, since
they are located within a nature reserve. We identified a new farm extension, settlement,
and greenhouse within the periphery of the trap, as well as a farm reduction. Within the
2 km radius around the trap locations, the results demonstrate a moderate increase in
ALAN during the observation period without any indications of decreases (Figure A4).
The increases likely correspond with settlement extensions identified via historical aerial
imagery. Within the 2 km radius, we identified five specific features likely contributing
to significant increases detected with the Mann–Kendall tau statistic. A new greenhouse
complex, three new greenhouse extensions, and a golf course were identified as potential
contributors to peripheral increases in nightlight intensity within 2 km of the insect trap
locations (Figure A4).

3.3.2. Nightlight Intensity Changes within 10 km Radius–Evaluation Points

Within the full study area (i.e., 10 km radius), in the northwest cluster of statistically
significant increases in nightlight intensity (Figures 5 and 7), the primary driver of these
significant trends is likely urbanization. Within the significant evaluation points (ID 1–10,
criteria outlined in Section 2.5), some specific features identified that are likely responsible
for the increases in nightlight intensity include courtyard extensions, nursery extensions,
greenhouses, and campsites. Within the non-significant evaluation points that still had
a trend slope value greater than 0.86 (ID 11–17), new settlements and growing urban
infrastructure were identified via aerial imagery as changes that occurred within the study
period that likely contributed to increased nightlight intensity. Additional pixels were
investigated using this same framework and significant features or changes were not
identified via aerial imagery; only the significant findings are reported here.

Within the 3% of the region that experienced a decrease in nightlight intensity, further
investigation suggested that the decreases within some of these areas (urban areas) could
be related to decreased consumption (see discussion; Figure A5). Within the city of Krefeld,
efforts were made to reduce the number of lights utilized per streetlamp from two to
one at night, resulting in a 30% decrease in intensity [32]. Data collected by the City of
Krefeld Energy Conservation Program revealed decreasing trends in energy consumption
in urban areas from 12.4 million kWh in 1998 to 8 million kWh in 2012 (Figure A5). The
temporal patterns in regional nightlight intensity (Figure 10) likely correspond to changes
occurring with the Niederberg coal mine, which was opened in 1912 and closed in 2001.
Dismantling of the local briquette factory began in 1995 and corresponds to regional
decreases in nightlight intensity (Figure 10). In the following years, we identified new
residential developments and buildings that correlate with increasing nightlight intensity
(Figure 10); the start and end values in the evaluation points time series are similar to
the mean difference between the regional medians of the early and late time periods
(Figure A2).
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4. Discussion

The spatial distribution of nightlight intensity trends resulting from linear regression
and the Mann–Kendall test reflect patterns of land use (Figures 4 and 5) where, across
the region, nightlight intensity generally increased between 1992 and 2010. The overall
increase in nightlight across the region and study period is likely driven by urbaniza-
tion [5,15,16]. We identified a mean 7% increase in nightlight intensity (and a maximum
47% increase), which is comparable to the trends identified by Sánchez de Miguel et al. [33]
across Germany.

Across the various spatial scales investigated (1, 2, and 10 km radii), we identified
different trends in nightlight intensity, and a variety of features potentially contribut-
ing to those trends; the variance within observations at different spatial scales is a well-
documented concept [34]. It is important to evaluate the nightscape of the area surrounding
nature reserves since they can significantly degrade habitat quality and have a negative im-
pact on the entire ecosystem [12]. Through the trends in nightlight intensity and historical
aerial imagery, we identified a new greenhouse, greenhouse extensions, and golf course
within a two-kilometer radius of the insect traps. Considering the significant insect biomass
decline found by Hallmann et al. [4] within the Orbroicher Bruch Nature Reserve, it may
be valuable to further investigate the contributions to light pollution from the identified
features. Additionally, it may be important to consider how these entities may relate to
declining insect abundance, and other ecological implications within the nature reserve
near these features. Across the full study area (10 km radius), we identified a variety of
new urban features constructed between 1992 and 2010 that have likely altered nightlight
intensity. We found that approximately 96% of the pixel-level trends had a positive slope
(>0, Figure 5), and 22% of the pixels within the region experienced statistically significant
increases in nightlight intensity (Table A2). With the majority of the study area experiencing
nightlight increases >1%, further investigation may reveal regional effects or implications.
The broader trend of increasing nightlight intensity across this region may be important to
consider in relation to local insect population decline.

Within a small proportion of the urban area (3% of the region), we identified decreases
in nightlight intensity that may be related to improved energy efficiency and/or reduced
energy consumption. While we cannot conclusively determine the cause of decreasing
trends in nightlight intensity without including ground-level observations or auxiliary data,
this observation points to the possible impact that city energy conservation programs could
have on ALAN. Energy use could be reduced by introducing new lighting technology while
maintaining or increasing the amount of light pollution. Alternatively, energy use could
also be reduced by using fewer lights, thus decreasing light pollution. Nightlight intensity
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over time could potentially serve as one metric that could provide more information to
local or regional energy programs to assess their effectiveness or plan future improvements.
This could be useful for broader scale management or assessments of light energy efficiency
for countries to monitor their collective progress through time. However, these results may
be confounded by several factors, including overglow, which is more prominent in urban
areas [35], and other limitations of the DMSP-OLS data discussed below.

Attributing specific anthropogenic changes to pixel-level trends in nightlight inten-
sity can help with conservation and landscape planning efforts. This framework has the
potential to direct research into which structures cause the most significant increases in
nightlight intensity near key insect habitats. It may also be helpful in determining what
methods are most effective at decreasing nightlight intensity or the radius that subsequent
light pollution spans across surrounding areas. Additionally, this type of investigation
may help expand understanding of which types of lights contribute the most pollution,
or what energy reduction efforts and policies are most effective. In scenarios without a
quantifiable change in nightlight intensity and observed insect decline, the potential effects
of temperature [36], chemical/biological pollutants, habitat loss or degradation, invasive
species, or other factors should be investigated. In regions with significant nightlight
intensity increases and observed insect decline, the outlined methods could be refined
and expanded upon to help identify which specific structure(s) may be responsible, and
to evaluate the contributions of nightlight. Isolating specific features potentially causing
increases in ALAN can guide in situ measurements to further investigate the impacts of
luminous flux. Ultimately, this type of investigation may have implications for ALAN miti-
gation efforts specific to the identified structure(s). Furthermore, the outlined methodology
could be refined to assess the effectiveness of nightlight mitigation efforts across broader
spatial extents.

There are several factors that have introduced different degrees of uncertainty in
this analysis, and it is important to consider their potential implications for the outlined
results. The limited significance of pixel-level trends across the majority of the region
is likely due to cloud cover, sensor calibration, spatial resolution, the precision of geo-
registration, variable sensor gain, overglow, and other known limitations of the DMSP-OLS
data detailed by Huang et al. [37]. The coarser spatial resolution of the DMSP-OLS dataset
(30 arc-second) is suited for regional analyses, but made it challenging to directly attribute
a quantitative change in nightlight intensity to sub-pixel landscape features (identified
via fine-resolution aerial imagery); the inferences that can be drawn at the 1 km and
2 km scales surrounding the insect trap locations are limited by the original 5 km spatial
resolution of the DMSP-OLS sensors. We selected the DMSP-OLS dataset to investigate
the time period corresponding to the study conducted by Hallman et al. [4]. However,
it would be preferable to use finer-resolution satellite imagery, when possible. Future
studies investigating ALAN during more recent time periods (2012 and onward) should
consider utilizing imagery from the Visible Infrared Imaging Radiometer Suite (VIIRS)
sensor as a finer-resolution option to navigate the uncertainty of attributing nightlight
intensity trends to local features [38]. Specific to the nightlight time series data utilized,
the data from 2010 may introduce noise and some uncertainty; however, excluding the
2010 data is unlikely to change the overall directionality of trends across the 19-year study
period (Figures 10 and A2). Additionally, the DMSP-OLS dataset only captures the VNIR
portion of the electromagnetic spectrum; there may be other light sources emitting in
different portions of the spectrum, like blue light from LED or ultraviolet wavelengths,
that may influence insect behavior [39–42]. This should be considered as there may be
additional ALAN emissions not captured by the DMSP-OLS satellites that could have
negative impacts on different insect species. Furthermore, static satellite images captured
within a single timeframe may not represent the full dynamic variation in the light emitted
by various structures [39]. The timing of important biological processes of different species
implies that impact on individual species may vary based on the timing and composition
of ALAN [39,43]. Previous studies investigating aquatic insects have noted that satellite
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imagery captures light emitted toward the satellite and does not necessarily capture light
emitted into a specific habitat or other directions [11]. Luminous flux also varies based
on the light composition. It is recommended to pair nightlight remote sensing imagery
with ground-level light measurements to monitor insects [7]. Advancements in concepts
surrounding calibration and correction of nighttime light imagery are still emerging, and
future investigations should consider variability in airglow and additional factors that may
influence light emitted upward toward the satellite, as described by Kyba & Coesfeld [44].
Further investigations into the Orbroicher Bruch Nature Reserve should consider using
ground-level measurements of light to explore the impacts of ALAN.

5. Conclusions

Our detailed examination of nightlight time series data paired with aerial imagery
revealed trends in nightlight intensity that reflected dynamic patterns of specific landscape
features that have altered ALAN within the region. Within the 10 km radius surrounding
insect traps in Orbroicher Bruch Nature Reserve, Germany, we observed a mean long-term
median increase of 7% (and a maximum of 47%) between the early and late time periods
we considered, and the majority of the study area experienced nightlight intensity increases
greater than 1%. Numerous studies across the world have reported independently on either
the patterns of increasing ALAN via satellite imager or observed insect population decline.
While it is unclear if the identified trends extend to other geographic regions, our results
further highlight the need for future studies to concurrently investigate long-term trends in
ALAN and insect decline; ideally, future investigations should span multiple scales and
consider the spatial and temporal overlaps between these patterns. This highlights an
important gap between regional trends in ALAN and identifying specific local features
contributing to these patterns. Ultimately, further development and refinement of these
methods has the potential to guide in situ investigations and mitigations of ALAN, and
targeting efforts toward the most impactful landscape features could provide an additional
strategy to support insect conservation.

Author Contributions: Conceptualization, T.S.; methodology, T.S.; investigation, T.S.; resources, T.S.;
data curation, T.S.; writing—original draft preparation, J.L. and C.M.H.; writing—review and editing,
J.L., C.M.H. and T.S. All authors have read and agreed to the published version of the manuscript.

Funding: The research has been funded by Bayer AG, Alfred-Nobel-Str. 50, 40789 Monheim, Germany.
Bayer Project MEAAL024.

Data Availability Statement: Data are available via corresponding author, including individual
time series nightlight intensity measurements of all grid cells, reclassification of urban/rural areas,
and codes for analysis. The basic geo information of the state survey of North Rhine-Westphalia is
protected by law. Use is only permitted with the permission of the district government of Cologne,
department 7 Geobasis NRW. In the case of presentations and copies, the following approval note
must be clearly visible: Basic geodata of the municipalities and the state of North Rhine-Westphalia
(c) Geobasis NRW, 2017. The right of use only applies to the internal use of the authorized user. The
transfer of basic geo information to a contractor for earmarked order processing is permitted. Any
use beyond this requires a special contractual arrangement with the district government of Cologne,
Department 7 Geobasis NRW. Credit for DMSP-OLS: Image and data processing by NOAA’s National
Geophysical Data Center. DMSP data collected by US Air Force Weather Agency. Insect trap locations
provided by Hallmann et al. (2017).

Acknowledgments: The authors would like to thank Markus Neteler (Mundialis), Frederik van der
Stouwe (knoell Consult), and Fabian Löw (Mundialis) for their guidance and efforts for this work.

Conflicts of Interest: The authors declare the following financial interests/personal relationships
which may be considered as potential competing interests: The research has been funded by Bayer
AG, Alfred-Nobel-Str. 50, 40789 Monheim, Germany. T.S. is an employee of Bayer Crop Science, a
manufacturer of agricultural products. J.L. and C.H. are employees of Applied Analysis Solutions
and received compensation for the preparation of manuscript.



Remote Sens. 2022, 14, 3876 15 of 19

Appendix A

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 21 
 

 

AG, Alfred-Nobel-Str. 50, 40789 Monheim, Germany. T.S. is an employee of Bayer Crop Science, a 

manufacturer of agricultural products. J.L. and C.H. are employees of Applied Analysis Solutions 

and received compensation for the preparation of manuscript. 

Appendix A 

 

Figure A1. Examples of potential combinations of spatial patterns, area, and intensity changes that 

could cause a 1% increase in nightlight intensity within the time series trend of a single pixel. 

Table A1. Significant Mann-Kendall pixel-level trends at varying levels of alpha significance.1. 

MKtau p-Value Number of Pixels (Out of 590) Percent of Region of Interest 

α < 0.01 18 3.1% 

α < 0.05 79 13.4% 

α < 0.10 130 22% 

  

Figure A1. Examples of potential combinations of spatial patterns, area, and intensity changes that
could cause a 1% increase in nightlight intensity within the time series trend of a single pixel.

Table A1. Significant Mann-Kendall pixel-level trends at varying levels of alpha significance.1.

MKtau p-Value Number of Pixels (Out of 590) Percent of Region of Interest

α < 0.01 18 3.1%

α < 0.05 79 13.4%

α < 0.10 130 22%

Table A2. Urban land cover delineation across the full study area (10 km radius) based on CORINE
2012 dataset. After resampling the classification to match the DMSP-OLS dataset, “urban” was
assigned to any pixel with ≥50% urban cover. The final number of pixels assigned to urban and rural
were totaled to estimate the percentage of the study region comprised of urban and rural land cover.

Land Cover Type Number of Pixels (Out of 590) Percent of Region of Interest

Rural 484 82%

Urban 106 18%
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Figure A4. Grid cells (black lines) represent the pixels that overlapped the 2 km radius around the
insect trap locations (red points). Within the 2 km radius, we identified five potential landscape
features (yellow points) potentially contributing to increasing nightlight intensity within the pixels
they are centered in/adjacent to. These features were not present in the 1989 aerial imagery and
were identified as changes in the 2013 imagery (with 2013 imagery shown). These features include a
greenhouse complex, three new greenhouse extensions, and a golf course.
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Figure A5. Decreases in nightlight intensity within urban areas where each different colored line
represents an individual pixel (a) corresponding with improved energy efficiency based on data
collected by the City of Krefeld Energy Conservation Program (b).
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