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Abstract 
Rising world population and changing diets are increasing the need for efficient and effective 

food and fiber production. Pesticides are used across the US to control pests and improve food 

yield and quality, but these benefits are offset by their potential to reach and possibly impact 

aquatic or terrestrial ecosystems. Regulatory agencies rely on prospective exposure models that 

often start with conservative simplifying assumptions that are refined with additional information 

if needed. The USEPA ecological risk assessment framework for pesticides assumes, at 

screening level, that 100% of the area draining to a water body is cropped. However, at the 

grower’s real-world scale, this simplifying assumption is generally not realistic and should be 

refined for higher tier assessment. The present study developed a US-wide spatially explicit 

analysis of crop density and proximity to surface waters to characterize the potential for 

pyrethroid insecticides to enter flowing surface waters. Reliable, transparent, and publicly 

available government spatial cropping and hydrology datasets were employed at the catchment-

scale across the full extent of agricultural production in the US were used to generate fifteen 

novel crop-specific probabilistic distributions describing the extent and proximity of each crop to 

the flowing water body defining small catchments. These were used to refine estimated 

environmental concentrations using USEPA standard regulatory scenarios to evaluate the 

importance of considering agricultural landscapes when refining aquatic pesticide 

concentrations. Incorporating these real-world probabilities of crop occurrence and proximity 

showed that, while potential maximal aquatic exposure concentrations are unchanged, the 

probability of exceeding regulatory decision-making concentration endpoints is much lower than 

predicted by standard assumptions (e.g., 1.9 to ~50-fold reductions by crop for 90% of 

catchments). Additionally, we show that the relative ranking of crops by their aquatic pesticide 

exposure potential may change from that indicated when cropping density and proximity are 

considered.  
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Introduction 

With a world population expected to 

reach over nine billion by 2050 [41], an 

increasing proportion of people rising out of 

poverty [70] and assuming a wider-ranging 

diet [16], the capability to increase 

agricultural output from the same land area 

while maintaining human and ecological 

safety and environmental quality is 

increasingly critical [9] The US produces and 

exports more agricultural products than any 

other country in the world [9]. In order to 

maintain or improve on current yields, 

efficiency must be increased while 

competition and damage from pests needs to 

be minimized. For example, to manage pest 

pressures, many growers employ a suite of 

options for the control of insects, weeds, 

fungi, and other damaging pests via 

Integrated Pest Management programs that 

utilize a range of chemical, biological, 

mechanical, and agronomic technologies to 

protect crops [20]. 

Pyrethroids are a class of synthetic 

chemicals similar in mode of action to 

pyrethrins (sodium channel modulators, sub-

group 3A) [22] that are naturally found in the 

flowers of pyrethrums (e.g., 

chrysanthemum). Pyrethroids effectively 

control a wide variety of insects and are 

registered for use on an extensive range of 

agricultural crops across the US and world-

wide. They are of critical importance for US 

agricultural production [52, 57] and have 

been used for more than 45 years to support 

food and fiber production in the US [1, 2] In 

addition, pyrethroids are becoming even 

more important as some currently used 

insecticides are being restricted or removed 

from the market [55]. 

Countries around the world have 

implemented regulatory frameworks to 

ensure that new and existing active 

ingredients can be used safely. For example, 

the US Environmental Protection Agency 

(USEPA) is mandated by the Federal 

Insecticide, Fungicide and Rodenticide Act 

(FIFRA) to assess new, and periodically re-

assess existing uses of pesticides to ensure 

there are no adverse ecological impacts 

because of pesticide usage described by the 

label. The ecological element of this risk 

assessment process utilizes a tiered approach 

that incorporates highly conservative 

assumptions at lower (or screening) levels 

with increasing realism (and complexity) 

being incorporated during refinement where 

needed. If an active ingredient passes the 
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lower, more conservative, screening, it is 

considered not to cause adverse ecological 

effects. Failing a screening tier necessitates 

additional problem formulation and data 

generation [52, 63] for evaluation in a refined 

assessment.  

For pesticide aquatic exposure 

modeling, the USEPA utilizes a set of 125 

well established crop-specific scenarios that 

provide crop- and location-specific weather, 

soil, and cropping data intended to estimate a 

“reasonable worst case” aquatic ecosystem 

exposure [45]. For aquatic exposure 

assessments, the weather and soil 

parameterization are based on  actual data 

(e.g., 30 years of site-specific daily weather) 

for a particular scenario location, while the 

characterization of the area contributing 

runoff/erosion to the receiving water body is 

assumed to be 100% cropped with the crop of 

interest and 100% treated (with the maximum 

pesticide application rate and number of 

applications allowed on the label with the 

minimum application interval). While this 

“100% cropped” assumption may be suitable 

for screening, if we are to refine the problem 

formulation it should incorporate the real-

world variability in cropping density and 

proximity. 

Spatial methodologies have been 

used for over 20 years to characterize 

landscapes in order to investigate potential 

environmental pesticide exposure to soil and 

surface water from drift and runoff based on 

proximity, soils, weather and cropping in the 

US [18, 24, 69], Europe [10, 30, 32, 40] and 

elsewhere [33].  These methodologies utilize 

Geographic Information Systems (GIS) to 

spatially combine potential pesticide use 

areas based on land use information (e.g., 

cropped fields) with locations of non-target 

environments such as nearby surface water or 

terrestrial locations. The resulting modeled or 

measured variability of exposure potential 

across a landscape allows regulatory 

screening scenarios to be placed into context 

opposite cropping and usage patterns across 

wider scales. These have varied from local 

[36, 67], to regional [15, 35], to global [12, 

21] scales. The work presented in this study 

incorporates a national framework of 

cropping density and proximity to surface 

water with a novel method applied to 

standard USEPA exposure scenario 

approaches in the US FIFRA pesticide 

regulatory framework. 

A well-established approach for 

refined pesticide exposure and effects 

assessment is known as Probabilistic 

Ecological Risk Assessment. This has been 

explored in programs such as ECOFRAM 

[53], EUPRA [17], and WEBFRAM [11]. 

Probabilistic risk assessment approaches for 

pesticide risk assessment have been 

demonstrated by Solomon (2000) and 

Verdonck (2002) [37, 66]. The underlying 

concept is that due to actual field variation in 

exposure potential, organism sensitivity, and 

ecosystem responses, there are no absolutes 

in risk assessment. Instead, the probability of 

exceeding a given concentration or level of 

effect can be estimated by understanding the 

distributions of observed values for key 

parameters in the assessment. In a 

probabilistic refinement of a risk assessment, 

the fixed conservative inputs in screening 

assessments may be replaced by a 

combination of distributions of inputs. In this 

study, we set out to measure nationwide or 
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regional distributions of cropping intensities 

around receiving waters that can be used to 

refine the screening level assumption that 

water bodies are 100% surrounded by a 

crop(s) of interest hereafter referred to as CoI. 

Thus, the primary objective of the 

present study was to utilize available spatial 

data on crop location, surface water location, 

and contributing land area to characterize the 

variability (i.e., distribution) in cropped areas 

within proximity to surface water that may 

contribute pesticide loadings. This will allow 

us to understand the frequency at which 

100% cropping of a CoI adjacent to a water 

body occurs.  Then to estimate crop-specific 

probabilities of potential aquatic exposure as 

it relates to cropping density and proximity in 

the exposure models. Since nationally 

consistent and geographically specific data 

are publicly available from US government 

agencies for the entire country at high spatial 

resolution, detailed and accurate assessments 

are now feasible. For this study, we used the 

nationally available and annually updated 

Cropland Data Layer (CDL) from US 

Department of Agriculture [43] and the 

National Hydrography Dataset Plus (NHD+) 

from US Geologic Survey and USEPA [64] 

to develop national and regional scale 

spatially explicit analyses of crop density and 

proximity to surface waters. The NHD+ scale 

of the analyses is highly relevant for farm 

scale operations and the resulting data for 

each crop have been examined on a 

probability of occurrence basis to produce 

derived datasets characterizing US cropping 

patterns. The NHD+ dataset is already used 

extensively by US government agencies to 

address water quality questions (discussed in 

Methods and Materials section). The national 

or regional distribution of cropping density 

(or Percent Crop Area, PCA) values for each 

crop was applied to the standard 30 years of 

modeled Estimated Environmental 

Concentrations (EECs) using a probabilistic 

approach to place the 100% cropping 

assumption into a real-world context for 

aquatic ecological risk assessment. This 

concept was discussed during the 

ECOFRAM process (53) and applied to 

landscape-level ecological risk assessment 

[18]. More recently, USEPA have applied 

PCA-based EEC refinements to drinking 

water assessments [48, 57],  but it has not yet 

been acknowledged as a regulatory approach 

for ecological aquatic risk assessments. 

It is important to point out that these 

crop-specific proximity data are novel and, to 

the best of our knowledge, reflect a unique 

resource that also has application in 

considering crop-specific interactions in 

riparian border areas, mitigating potential 

nutrient and sediment transport at the 

catchment (i.e., farming operation) scale, or 

integrated for use at progressively larger 

hydrologic scales. For example, the crop-

specific catchment PCA data generated in 

this study were combined with spatial data on 

soils and weather and used in a national 

examination to place the USEPA scenarios 

into a national context of catchment-scale 

off-field transport of pyrethroid mass [35].   

Methods and Materials 

Spatial Unit of Analysis 

NHD+ is a suite of geospatial 

products developed by the USEPA, the U.S. 

Geological Survey, and Horizon Systems 

Corporation that builds on and extends the 

capabilities of the National Hydrography 
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Dataset (NHD) by integrating the NHD with 

the National Elevation Dataset and the 

Watershed Boundary Dataset. To provide the 

greatest flexibility for the results of the 

current assessment, the NHD+ framework of 

hydrologically connected catchments were 

used as the base spatial unit. The entire set (or 

a subset) of catchments can be used as a 

population from which to generate 

distributions of relevant metrics. The NHD+ 

data are government defined and are being 

used for various regulatory frameworks. This 

includes WATERS [50], USEPA Clean 

Watersheds Needs Survey [48], National 

Pollutant Discharge Elimination System [46] 

the USEPA Office of Water 303(d) list of 

impaired waters [62], and perhaps most 

notably USEPA’s StreamCat dataset which 

contains over 600 water quality, biological 

condition, and watershed integrity metrics 

linked to NHD+ catchments [19] NHD+ are 

also used in National Rivers and Streams 

Assessment [27] and the National Lakes 

Assessment [51] as part of the USEPA 

National Aquatic Resource Surveys program. 

See EPA Website for a comprehensive list of 

over 150 government and private 

applications utilizing the NHD+. NHD+ 

contains a realistic representation of 

hydrologic pathways and spatially referenced 

attributes useful for landscape modeling [5] 

including elevation derived catchments and 

flow paths developed via a robust method 

evaluation process [23].  

Data in the NHD+ framework are 

highly detailed spatially, although some 

limitations do exist. For example, the 

flowlines and catchments are derived from a 

contiguous and nationally consistent 

elevation dataset. However, in areas of little 

elevation variation the flow direction could 

not be determined for some flowlines, and 

hence catchments could not be defined. 

While these flowlines were retained in the 

NHD+ dataset they were embedded as part of 

a larger catchment defined by a flowline in 

which the flow direction could be 

determined. This often occurred for 

engineered irrigation and drainage networks 

however this was not always limited to these 

‘canal/ditch’ features. Usage of flowline-

specific attribute information (e.g., estimated 

flow rates, velocity, etc) should be used with 

consideration after consultation of the NHD+ 

documentation [63]. However, we did not use 

specific flowline/catchment attributes 

beyond the feature type (FTYPE and 

FCODE, see Table S5 in Supplemental 

Information) and based our analysis on the 

spatial delineation only.  

We selected the NHD+ catchments as 

the spatial unit of landscape analysis. This 

selection was due to the large number of 

catchments (over 2.5 million), of which each 

has a single flowing water body (either 

stream/river feature types or canal/ditch 

features where flow direction could be 

determined), where the outflow at the 

catchment outlet reflects the direct runoff 

from the entire catchment. These data 

account for the entire US land area and 

comprise a range of very small units highly 

relevant to farming practices at the local 

scale. Based on the 2.2 million catchments 

containing cultivated cropland across the US 

in 2011 [4] 90% are 650 ha (~1600 acres) or 

smaller and 50% are smaller than 160 ha (395 

acres). To provide context, the average farm 

size in 2019 across the US was approximately 

180 ha (444 acres) with state-level averages 
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ranging from 22 ha (55 acres) to 980 ha (2417 

acres) across the individual 50 states [44].  

These NHD+ catchments, with a 

median size of 160 ha (395 acres), reflect the 

scale of many typical farming operations and 

show the drainage areas that deliver to 

headwater streams and larger flowing water 

bodies. See Table S1 in the Supplemental 

Information (SI) for more details on size 

distribution of the NHD+ catchments. This is 

an effective surrogate based on actual data for 

the standard USEPA local agriculture 

representation of a square 10-ha area 

delivering runoff and drift to a 1-ha square 

pond. While ponds and small flowing waters 

are different ecological settings, flowing 

waters have a special significance for several 

reasons. Firstly, they form a connected 

network that serves as a fundamental element 

of the hydrological cycle and drains most of 

the land in the US. Secondly, measurements 

made on cropping intensity in the areas 

surrounding streams include many ponds and 

their surrounds and cover such wide extents 

that they are equally relevant to 

understanding pond drainage areas as they 

are for stream drainage areas. Thirdly, small 

streams are at least as sensitive to impacts by 

anthropogenic chemicals as ponds [25, 34,  

68] and chemicals entering streams may 

eventually be transported to many other 

locations and larger water bodies (i.e., ponds 

only drain small areas of the US and are 

independent units). Finally, our intent was to 

use well-accepted government datasets, and 

such spatial data defining the drainage area 

for static water bodies did not exist (as it did 

for flowing waters). Even if it did, the 

drainage area limited to ponds and static 

water bodies would represent only a subset of 

the total agricultural area in production.  The 

subset of 2.2 million agricultural catchments 

that contained cultivated cropland as defined 

by USDA NASS [4], contained all 

agricultural land in the US, and formed the 

pool of catchments for this analysis. This 

ensured that catchments with no agriculture 

were excluded from the analysis as this might 

have biased the findings toward low density 

agriculture catchments.  

An efficient methodology to process 

the more than two million catchments and 

their stream reaches was needed to 

implement proximity zones nationally within 

a GIS. Therefore, the proximity processing 

was performed in a raster rather than vector 

GIS environment. The source NHD+ flowing 

water features, originally supplied as lines 

and polygons, were converted to a raster 

dataset with a 10m resolution. This resolution 

was chosen as a compromise between the 

level of spatial accuracy of the original lines 

and as an even divisor of the source 30m 

pixel resolution of the CDL (described in the 

next section). More details are provided in 

the SI. 

Crop Type and Location 

Crop location information was 

obtained from the national USDA National 

Agricultural Statistics Service (NASS) CDL 

products that consist of digital raster data 

layers of 30m pixels with specific crop type 

information suitable for use in a GIS [42]. 

These data are generally agreed to be the best 

available data on agricultural cropping 

location and are used for FIFRA ecological 

risk assessments [14, 58), the development of 

a spatial aquatic model (SAM) for pesticide 

assessments [49], pesticide drinking water 

https://doi.org/10.21423/jrs-v10a192
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human health risk assessments [48, 59] and 

national-scale endangered species 

assessments for pesticides [56, 59, 65] The 

CDL contains over 50 crop classes in the 

output dataset. For this study, these were 

grouped into CoI that represent crops with 

high pyrethroid use [13] or high potential for 

pyrethroid aquatic exposure [7, 57].  The CoI 

are alfalfa, almond, citrus, corn, cotton, grass 

seed, lettuce, peanut, pecan, pepper, potato, 

soybean, sunflower, sweet corn, and wheat. 

CoI areas were analyzed for the latest five 

years (2008-2012) of data available in mid-

2013 when this study commenced. A separate 

5-year composite layer was also created for 

each CoI such that if any pixel was classified 

as that CoI during the five-year period, the 

composite layer would classify it as that CoI. 

In this way, the composite layer represents all 

areas that have ever been classified as a 

particular CoI during the five-year period. 

This ensures proper accounting for areas 

where crops are rotated or where the CDL has 

less accuracy for a single year [56]. This is 

comparable to the approach used by the 

USEPA to identify pesticide use sites (i.e., 

Use Data Layers) for endangered species 

assessments [60] although the crop years 

included in the 5-year composite differ. A 

detailed analysis of 2012 USDA Census of 

Agriculture [1] was used to confirm that the 

CDL from our selected states represented a 

nationally significant occurrence of CoI for 

our analysis (see Supplemental Information).   

CDL data were resampled from 30m 

to 10m pixel resolution to conform to the 

resolution of the raster representation of 

NHD+ stream segments used in evaluating 

crop proximity (discussed in the next 

section). Resampling the data from one 

resolution to another involves assigning a 

pixel value in the output grid (the new 

resolution of 10 meters) based on the closest 

(i.e., “nearest neighbor”) pixel from the input 

grid (30 meters). Exactly nine 10m output 

pixels are produced, each with the same value 

as the single 30m input pixel. Details of the 

CDL crop groups, evaluation of CDL and 

census crop acreage data, and spatial 

processing are supplied in the Supplemental 

Information. 

Crop Proximity to Surface Water 

Because the transport of pyrethroids 

to surface water by drift or runoff is heavily 

influenced by proximity, several “proximity 

zones” (PZs) were implemented for which 

further metrics were characterized. We made 

the working assumption that the application 

area in an NHD+ catchment that might 

potentially contribute a significant fraction of 

pyrethroid loading to a receiving water is the 

200-m proximity zone adjacent to both sides 

of the stream. Pyrethroid loading contributed 

by crop farther than 200m was considered 

much less impactful related to pesticide 

loadings and our analysis attempted to 

emphasize the impact of the most critical 

runoff and drift delivery areas. These 

notional areas around each stream reach were 

further divided into smaller PZs defined to 

represent some of the application restrictions 

on pyrethroid labels and allowed more 

detailed analyses as needed. A 0-10m PZ 

approximates the 25ft (7.6m) label buffer 

drift setback distance for ground applications 

of pyrethroids, while a 10-50m PZ reflects 

the minimum 150ft (45.7m) label 

requirement for a drift setback distance for 

aerial applications of pyrethroids. The 50-

https://doi.org/10.21423/jrs-v10a192
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200m (164 to 656 ft) PZ includes the 

remaining land area included in this 

proximity analysis. To reduce complexity 

and align with the standard screening 

assumption that all pesticide applications are 

aerially applied when allowed by the label, 

the 10- 50m and 50- 200m PZs were 

combined into a single 10- 200m PZ for the 

detailed analyses reported in this paper. 

Additional details of proximity zone GIS 

processing are supplied in the Supplemental 

Information. 

Resampled crop location data from 

the CDL (at 10m resolution) were combined 

with the PZs using an overlay operation 

characterizing each PZ according to the 

percentage of its area that is composed of 

each CoI (i.e., the PCA). Figure 1 illustrates 

the NHD+ catchment (red outline) and 

stream (blue) with 10- 200m PZ extent (blue 

shaded area) overlaid with the CoI (cotton in 

orange). This figure shows a typical size 

NHD headwater catchment (651 ha, 1600 

acres) and by comparison with the distinct 

field boundaries, it provides a good visual 

representation for how the NHD+ catchment 

scale is relevant to understanding farm scale 

operations. 

Baseline Scenarios Based on USEPA 

Screening Exposure Scenarios 

USEPA has designed >100 

“scenarios” for the Pesticide Root Zone 

Model (PRZM, Suarez 2005) that are 

intended to represent crop-specific 

landscape conditions vulnerable to chemical 

transport to aquatic ecosystems due to runoff 

and erosion. These scenarios simulate a 

typical soil and slope associated with the 

CoI in a particular region, using locally 

appropriate cropping parameters (e.g., 

emergence, harvest, rooting depth, etc.), and 

a weather station most relevant to the 

soil/crop location. Using a single 

representative pyrethroid [14, 18] scenarios 

covering 15 CoIs were modeled at a field 

scale using daily weather data for 30 years. 

Off-field runoff/erosion transport was routed 

onto the label-mandated 10-ft vegetated 

filter strip (VFS) (which has since been 

increased to 15/25 ft [55] d modeled using 

VFSMOD [26].  Water, chemical and 

sediment coming out of the VFS entered 

into the receiving water body and the 

AGRO-2014 model [29] was used to 

generate daily aquatic EECs. Additionally, 

the AgDRIFT® model (version 2.1.1)  [39] 

was used to estimate off-target spray drift 

deposition into the water body after applying 

specific label no-spray buffer distances for 

ground, airblast, or aerial applications. 

Standard USEPA screening scenarios do not 

include modeling of a VFS; therefore, while 

the presented modeling matches the standard 

USEPA scenario approaches in most other 

aspects (see Modified modeling approach 

section in the SI), we are differentiating 

resultant EECs using the term “baseline” 

within this paper. See further information on 

exposure modeling in the Supplemental 

Information. 
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Figure 1. Example headwater catchment (outlined in red) showing NHD+ stream and 10-200m proximity 

zone (PZ) overlaid with 2012 CDL cotton (orange) to generate percent crop area (PCA). The inset also shows 

the three detailed PZs utilized for this study. 

 

Catchment Agronomic Distributional 

Analysis (CADA) 

In the present study, spatial analyses 

of cropping density and proximity were 

conducted with the resulting distributions 

used to provide probabilistic context for 

USEPA standard screening model 

assumptions. The selected CoIs comprised 

the vast majority of uses that are labeled for 

treatment by one or more pyrethroid active 

ingredients. Thus, the measured real-world 

crop occurrence data are highly relevant to 

include in a probabilistic refinement of 

potential aquatic exposures.  

From an exposure assessment 

perspective, an important driver of potential 

aquatic exposure is the cropping intensity in 

a watershed, quantified as PCA. Thus, the 

underlying assumption for this analysis is 

that the drift and runoff/erosion reaching the 

water body is proportional to the area 

cropped (i.e., PCA) since we assume all of 

the crop is treated. To simplify the analysis 

and remain congruent with the screening 

assumption that the 10-ha area delivers 

https://doi.org/10.21423/jrs-v10a192
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runoff uniformly, we assumed that the 

distance from the stream reach was not a 

major variable (i.e., that transport is 

independent of the position of the crop in the 

catchment). However, it should be noted that 

the PCA data generated for the individual 

smaller PZs (i.e., 10-50m and 50-200m 

areas) would support this more sophisticated 

analysis. Thus, the crop specific PCA 

distributions provide a simple metric to 

characterize the landscapes where each CoI 

is grown. 

In our Catchment Agronomic 

Distributional Analysis (CADA), we 

examined the effects of the real-world 

distribution of PCA values in the 10-200m 

PZ on runoff/erosion and drift entry on 

exposure modeling EECs in place of the 

100% cropped assumption. These CADA 

analyses were conducted using relevant 

USEPA standard model scenarios to provide 

a combination of soil erodibility, slope, and 

weather data corresponding to each crop 

type examined.  

The CADA calculations are based on 

the concept of estimating the range of 

exposures that might be expected if the 

USEPA model scenario was run many times 

to simulate the measured distribution of 

individual catchment PCAs. Because of the 

way that the USEPA scenario models 

behave, this conceptually means that the 

data from the baseline scenarios can be 

reused by simply multiplying the originally 

predicted EECs by the PCA fraction for 

every cropped catchment to create a 

distribution. This approach has been used by 

USEPA for pesticide drinking water risk 

assessments where the entire area draining 

to a reservoir is not cropped [59].  

To simplify this, we developed an 

approach that would divide the ranked 

distribution into “lumped” PCA groups. 

With crop-specific PCA distributions 

numbering tens or hundreds of thousands 

(Table 1), calculations using the entire set of 

catchments were not necessary, and a 

simplified sampling of the distribution was 

sufficient to describe the variability in the 

PCA data. To represent the complete PCA 

distributions in a reasonable number of 

calculations, each ranked crop distribution 

was divided into 10 non-uniform groups 

designed to provide optimum differentiation 

of the higher vulnerability catchments. To 

provide more granularity at the upper end of 

the PCA range where PCA is greatest, as a 

simplifying conservative assumption the 

catchments were divided into groups based 

on their PCA ranking in approximately 

geometric increments (0-25, 25.1-50, 50.1-

75, 75.1-87.5, 87.6-90, 90.1-93, 93.1-96, 

96.1-98, 98.1-99, 99.1-100%). The highest 

CoI catchment PCA value in a group was 

used to represent all catchments in that 

group to ensure that substantial 

conservatism was retained in the analysis 

(e.g., the 0-25% group was modeled using 

the PCA in the 25th percentile catchment, the 

99.1-100% group using the PCA measured 

in the 100th percentile catchment).  

The crop-specific baseline maximum 

annual EEC for each year of the analysis 

(n=30, Figure 2A) was multiplied by the 

maximum crop-specific PCA (as a fraction) 

for each group of PCAs (n=10, Figure 2B). 

This produced what are effectively 300 
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“simulated years” of annual EECs that 

reflect the range of crop-specific PCAs 

measured across the region or nationwide 

(Table 1). Each EEC/PCA combination has 

a probability of occurrence across the 300 

“simulated years” that reflects both the 

likelihood of the year occurring (1 in 30) as 

well as the fraction of the PCA distribution 

that each PCA group represents (e.g., 1 in 

100 for the 99.1-100% group or 25 in 100 

for the 0-25% PCA group). The two 

probabilities must be combined to estimate 

the overall probability of occurrence of each 

of the 300 “simulated years” of annual EECs 

(Figure 2C); for example, an annual 

maximum EEC (1-in-30 years) in the 99.1 -

100th percentile PCA group (i.e., 1% 

probability of occurring) has an occurrence 

probability of 1/30 (3.3%) multiplied by 

1/100 (1%) = 0.0003. Likewise, one of the 

30 annual maxima EECs in the 0-25th 

percentile PCA group has an occurrence 

probability of 1/30 (3.3%) multiplied by 

25/100 (25%) = 0.0083. The baseline EECs 

were ranked from high to low and each year 

rank baseline EEC was multiplied by 10 

PCA values to compute 300 CADA EECs. 

The CADA EECs for the 300 simulated 

years were ranked from high to low and the 

cumulative occurrence probability of each 

CADA EEC was calculated and plotted 

(Figure 2C and Table S7 in Supplemental 

Information).   

Assessing Influence of CADA PCA Results 

on Baseline Scenarios 

To assess the influence of the CADA 

refinement on the baseline scenarios, we 

compared the 90th and 50th percentile EECs 

of the baseline model outputs with the 

corresponding 300 water-body-year CADA 

EEC 90th and 50th percentiles, respectively. 

The resulting multiplier factors (MF) report 

the factor by which each CADA EEC must 

be multiplied to match the corresponding 

baseline EEC and are calculated as: 

𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑖𝑒𝑟 𝐹𝑎𝑐𝑡𝑜𝑟 (𝑀𝐹)

=
𝐵𝑎𝑠𝑒𝑙𝑖𝑛𝑒 90𝑡ℎ 𝑜𝑟 50𝑡ℎ %𝑖𝑙𝑒 𝐸𝐸𝐶

90𝑡ℎ 𝑜𝑟 50𝑡ℎ %𝑖𝑙𝑒 𝐶𝐴𝐷𝐴 𝐸𝐸𝐶
 

For example, an MF of 2 indicates that the 

CADA EEC incorporating PCA must be 

multiplied by a factor of 2 to equal the EEC 

from the baseline scenario. 

Results 

Crop specific spatial and temporal scope for 

each CoI 

For each CoI (Table 1) provides the 

spatial scope of the assessment, the year(s) 

of CDL data used along with the number of 

acres, and the total number of NHD+ 

catchments modeled in the study. The total 

number of NHD+ catchments examined per 

crop ranged from 3,102 (vegetables/ground 

fruit in FL) to over 750,000 (corn in entire 

US). Thus, the number of catchments for 

even the CoI with the smallest sample size is 

still suitably large to support distributional 

analysis.  
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Figure 2. Schematic of the CADA approach combining 30 years of annual maxima EECs from baseline 

scenario modeling (A) with PCA distribution and probabilities (B) to create CADA distribution of 300 

probability weighted simulated year EECs (C). For larger versions of (B) and (C), see Figures 3 and 4, 

respectively. 
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Representativeness of Spatial Extent for Each 

CoI 

To verify that the spatial analysis 

using the CDL data (prior to estimating crop 

occurrence in the PZs) was producing 

reasonable estimates of cropped area for each 

CoI, the derived spatial data were compared 

with the 2012 USDA Census of Agriculture 

(USDA 2014) which is an official point of 

reference for agricultural statistics. Table 1 

reports the CDL acres in the spatial extent of 

this analysis (e.g., national or state(s) as a 

percentage of the reported crop acres based 

on the 2012 Census of Agriculture). This 

number exceeds 100% if the data derived 

from the CDL exceeds the Census of 

Agriculture and, unsurprisingly, this was 

seen to occur more often when the 5-year 

composite CDL layer was used. The results 

showed that our selection of CDL analyses 

for 13 of the 15 CoIs accounted for 95% or 

more of the acres reported by USDA in the 

spatial extent analyzed, indicating that the 

approach was effective and realistic in 

addressing national or regional crop-specific 

risk assessment. The last two columns show 

data for individual CoI scenarios that are part 

of a larger CDL crop class (e.g., almonds as 

part of the tree nuts crop group). For these 

crops, the CoI percentage of the CDL crop 

class (based on USDA census) is reported, 

along with the percentage of the individual 

CoI area covered by the spatial extent 

processed. For example, the CDL area 

contained in the 3,102 catchments in FL 

selected for processing represents 24% of the 

overall FL vegetables/ground fruit acres from 

the 2012 Census. However, peppers represent 

only 5.7% of the actual vegetables/ground 

fruit area in FL; therefore, the ~58,000 acres 

of CDL contained in those 3,102 catchments 

represent over 400% of the total FL pepper 

acres grown in 2012.  

Percent Cropping in Proximity Zones (PZs) 

As discussed previously, GIS 

processing produced datasets for the 

percentage of each CoI in the relevant 

catchments enumerated in Table 1 that 

occurred in PZs of 0-10, 10-50 and 50-200m 

to each side of the stream. This information 

is in the dataset but going forward the PZ data 

discussed herein simply refers to the 

combined percentage present in the 10-200m 

PZ. As an example of the data generated, 

Figure 3 illustrates the shape of the 

cumulative distribution of the entire set of 

NHD+ catchment 10-200m PZ PCAs for 

cotton (n=138,707), highlighting the location 

in the distribution of the 50th (0.3% PCA), 

96th (29.5% PCA), 98th percentile (42.9% 

PCA), 99th (57.4% PCA) and 100th (100% 

PCA) catchments.
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Table 1. Details of USDA cropping areas, numbers of NHD+ catchments, and fraction of the USDA Ag census 

crop areas accounted for in the analysis 

Crop 

(USEPA 

Scenario) 

Spatial 

Extent 

Temporal 

Extent 

CDL Crop 

Class 

Catchme

nts 

Modeled 

CDL 

Acres of 

Crop in 

Spatial 

Extent 

% of 

USDA 

Census  

Crop Class 

Area 

Coveredb  

% of 

USDA 

Crop 

Class 

that is 

CoIc 

% of 

USDA 

Census 

Individual 

CoI Area 

Coveredc  

Alfalfa National 2012 Alfalfa 465,650 16,165,805 97%  
  

Almond CA 2012 Tree Nut 7,474 1,704,659 114% 63% 182% 

Citrus FL 2012 Citrus 7,490 976,906 181%    

Corn National 2012 Corn 757,949 95,651,409 101%    

Cotton National 2012 Cotton 138,707 13,451,958 143%  
  

Grass 

Seed  
OR 2013 d 

Sod/Grass 

Seed 
3,693 4,201,222 998%  

 

Lettuce CA 5-yr compositea 
Veg/Ground 

Fruit 
8,332 1,367,047 124%  

  

Peanut 
GA, FL, 

AL  
2012 Peanut 35,991 1,368,424 119%  

  

Pecan 
GA, TX, 

NM 

2012 (GA) and 

5-yr compositea 

(TX, NM) 

Tree Nut 41,339 585,389 152% 100% 152% 

Pepper FL 2012 
Veg/Ground 

Fruit 
3,102 57,657 24% 5.7% 421% 

Potatoes 

CO, ID, 

ME, 

WA, WI 

2012 
Veg/Ground 

Fruit 
28,594 1,519,791 85% 39% 217% 

Potatoes  ME 2012 
Veg/Ground 

Fruit 
7,801 123,434 110% 55% 202% 

Soybean National 2012 Soybean 658,633 75,243,102 99%  
  

Sunflowere National 

2012 (ND, SD) 

and 5-yr 

compositea 

(other states) 

Sunflower 86,853 2,676,850 143%  

  

Sweet 

Corn 
National 5-yr compositea Sweet Corn 68,989 301,398 198%  

  

Wheat National 2012 

Wheat 

(spring, 

winter) 

614,378 55,399,808 113%   

  
a To account for higher than normal omission error in the CDL for some crops, the composite of all 5 years of 

CDL (2008-2012) was used for this analysis.  
b 2012 Census of Agriculture. (USDA 2014)  
c Column only included for scenarios that are part of a larger CDL crop class containing multiple crops 
d Grass Seed was added at a later time and 2013 was the latest available CDL at that time. 
e No EPA Sunflower scenario existed, so to cover this pyrethroid-important crop, this scenario generated based 

on the ND Corn scenario, see SI for details. 
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As discussed above, to turn these 

distributions of large numbers of catchment 

measurements into values that could 

efficiently be applied in a probabilistic 

analysis, each CoI distribution was expressed 

as 10 “groups” of PCA values. Table 2 

reports the 10 geometric percentiles for the 

distributions of these PCA values for all 

CoIs. It may seem counter-intuitive that some 

crops have PCA values of 0.0 for the 25th 

percentile, but this is where at least 25% of 

the catchments contained the CoI but there 

was none within the 10-200m PZ. This table 

demonstrates that at the 96th percentile, the 

populations of catchments relevant to each 

CoI, have a wide range of PCA values (4.1-

67.2%) while at the 90th percentile, the range 

has narrowed (1.3-44.4%). All but three of 

the CoIs have 99% of the catchments with 

<75% PCA. However, the data also show that 

some catchments have 100% CoI in the 10-

200m PZ for all but two CoIs (peanuts in GA, 

FL, and AL and vegetable/ground fruit 

[pepper] in FL) demonstrating that the 

USEPA screening scenario (i.e., an 

assumption of 100% PCA) does occur within 

the 10-200m PZ in NHD+ catchments, 

although very infrequently (<1% of 

catchments). One of the more striking 

findings is that for all CoIs in at least half of 

the catchments growing the CoI, its 

production acreage is less than 4% of the PZ 

area (50th percentile PCA values in Table 2). 

These data provide a snapshot of actual 

(measured) cropping practices at the NHD+ 

catchment scale and reveal highly skewed 

distributions of PCA. 

Figure 3. Cumulative distribution of cotton NHD+ catchment PCAs in 10-200m PZ showing the 10 PCA 

groups and PCA values used in the calculations in Table 1 to represent all catchments in the PCA group 
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Table 2 also indicates the magnitude 

of conservatism associated with the working 

assumption used in this paper of estimating 

the distribution of EECs by applying the 

maximum PCA in a PCA group to all the 

catchments in that group. For example, for 

cotton, we used the assumption that the PCA 

was 57.4% for all catchments in the 98-99% 

PCA group when Table 2 shows that the PCA 

ranged across this group from >42.9 to 

57.4%. Similarly, for corn, the assumed PCA 

for all catchments in the 50-75% PCA group 

was 18.0% when the actual range was >2.7 to 

18.0%. 

The USEPA reported a set of PCA values 

based on 5,477 drinking water intakes using 

CDL as the cropping footprint. Results were 

reported for 18 Water Resource Regions 

(HUC-2s). Although only the maximum 

crop-specific PCA values were reported for 

each crop and HUC-2 combination, it does 

show a geographic distribution of the 

maximal calculated PCA (Table 3-5, 

USEPA 2014). For example, the maximum 

PCAs for corn varied from 0% (HUC-2 16) 

to 68% (HUC-2 07) with a mean of 19% 

(SD 0.19). The USEPA data show 

considerable crop-specific geographic 

variability (at least in maximal PCA values). 

Our NHD+-based analysis also captures 

geographic variability, as well as reporting 

and utilizing the entire range of PCA values 

(25th percentile to maximum) when 

developing EECs (e.g., ranging from 0.1% 

to 100% PCA for corn). Our PCA range has 

higher maximum values than reported by 

EPA due to the smaller spatial unit of 

analysis (NHD+ catchment). Our method of 

applying the entire distribution of PCA 

values for a CoI provides a refined approach 

compared to single maximal values. 

 
Figure 4. Results showing application of CADA (red points) to the distribution of 30 simulated annual 

maxima EECs for cotton from the baseline assessment (blue points) for water column with 50th and 90th 

percentile MFs illustrated (blue and grey horizontal lines, respectively). Vertical grey bar represents the 

single EEC that is selected for baseline scenario cases. Green arrow (A) shows the reduction in probability of 

exceeding the baseline EEC, and orange shaded area (B) illustrates concentrations greater than the baseline 

regulatory value may occur but with far lower probability. 
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Table 2. Selected percentiles of 10-200m PZ PCA distributions for individual CoIs 

Crop of Interest (CoI) 
Maximum PCA used to represent each percentile group 

10-200m PZ PCA distribution for each CoI (%) 

 25 50 75 87.5 90 93 96 98 99 100 

Alfalfa 0.1 0.5 2.8 7.6 9.6 13.3 20.0 29.9 40.8 100.0 

Citrus 0.0 0.8 3.6 8.4 10.5 15.3 25.9 41.7 59.5 100.0 

Corn 0.1 2.7 18.0 35.8 40.9 48.7 59.6 71.4 81.3 100.0 

Cotton 0.0 0.3 2.9 10.5 13.7 19.5 29.5 42.9 57.4 100.0 

Peanut 0.0 0.2 2.6 7.9 10.0 13.5 19.3 28.0 35.7 93.8 

Soybean 0.2 3.4 17.8 33.0 37.5 44.2 54.2 66.2 77.3 100.0 

Sunflower 0.0 0.0 0.4 2.0 3.2 5.8 12.3 22.8 34.1 100.0 

Sweet corn 0.0 0.1 0.4 1.3 1.8 3.1 6.3 13.0 21.8 100.0 

Almond 0.4 3.1 17.5 38.1 44.4 53.3 67.2 79.7 89.2 100.0 

Pecan 0.0 0.2 1.0 2.6 3.3 4.6 7.2 12.3 19.5 100.0 

Lettuce 0.1 0.9 4.8 14.4 18.7 25.4 38.9 55.5 67.9 100.0 

Pepper 0.0 0.0 0.2 0.9 1.3 2.1 4.1 9.5 19.1 80.8 

Potatoa (ME) 0.0 0.1 0.9 5.1 7.8 12.6 21.5 33.7 44.1 100.0 

Potatoa (ID) 0.0 0.1 0.5 1.9 2.7 4.1 7.7 13.3 18.7 100.0 

Wheat 0.0 0.4 5.4 17.3 22.0 29.7 42.0 56.2 69.0 100.0 

Grass seed 0.1 3.7 18.9 33.8 36.8 43.4 51.7 61.7 69.9 100.0 
a see spatial extent details in Table 1.

CADA Analyses – Impact of PCAs on 

Baseline Exposure Assessments 

Figure 4 illustrates the 24-hour water 

column concentration data from the baseline 

EEC distribution compared with the output 

from the CADA approach for the MS cotton 

scenario for a single representative 

pyrethroid [14]. The figure displays the 

distribution of 30 simulated annual maxima 

EECs from the baseline assessment based on 

the 100% cropped delivery area assumption 

(blue points) with the baseline EEC 

identified by point A (green). This 

presentation highlights the fact that the 

regulatory assumption is the 1-in-10 year 

value from 30 years of modeling and so 

there are exposures higher than this 

regulatory concentration endpoint. The red 

line shows the distribution of the CADA 

simulated 300 water body yearly annual 

maxima obtained by applying the 

probability distribution of real-world PCAs. 

The purple arrow (at point A) shows the 

magnitude of reduction in probability of 

encountering the baseline EEC using the 

CADA approach.  In this case 1-in-10 year 

(10% probability) is reduced to 0.067% 

probability. The horizontal grey arrow 

indicates the extent of the 1-in-10 year 

maximum EEC is reduction (i.e., the 

multiplication factor) by considering the 

impact of the crop-specific PCA on 

estimated aquatic exposures (in this case by 

a factor of 8.3). The orange shaded area 

identified by arrow B indicates that this 

probabilistic refinement does not negate the 

finding that concentrations greater than the 

1-in-10 year baseline regulatory value may 

still occur. However, instead of exceedances 
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occurring in two years out of every 30 (6.7% 

probability), their likelihood of occurrence is 

greatly reduced (in this case to less than 

0.1% probability). The impact of this 

probabilistic approach applies throughout 

the distributions. For example, the 

horizontal blue arrow shows the reduction 

magnitude of the 50 percentile (1-in-2 year) 

EEC (in this case by a factor of 170). 

Comparable results for 21-day TWA 

sediment concentrations are provided in the 

SI (Figure S5 in Supplemental Information). 

Using the same approach, Table 2 reports 

the resulting MF values for the 90th and 50th 

percentile water body year EECs for a 

representative pyrethroid across the 15 CoIs 

and 18 USEPA scenarios. This table shows 

that 24-hour water column MFs for the 90th 

percentile range from 1.88 for CA almond 

(i.e., the CADA EEC must be multiplied by 

a factor of 1.88 to equal the standard CA 

almond scenario EEC) to almost 50 for FL 

pepper. As shown above, the influence of 

CADA on EECs is more pronounced for the 

50th percentile EEC, with MF values ranging 

from 5.72 (CA almond) to over 500 (FL 

pepper). Differences were apparent for the 

same crop between spatial extents, where 

the IL corn 50th percentile MF is 22% 

greater than IN corn and MS cotton 50th 

percentile MF is 83% greater than TX 

cotton. Clearly the impact of the actual 

catchment cropping density is dependent 

upon both the crop and the 

national/regional/state scale as indicated by 

the shape of the distributions (Figure 3). 

Comparable results for 21-day TWA 

sediment MFs are provided in the SI (Figure 

S8 in Supplemental Information).   

Discussion 

This probabilistic analysis examined 

the impact of measured distributions of 

crop-specific cropping intensities on 

regulatory model outputs. These were 

compared to predicted potential exposures 

using the standard screening level default 

assumption that water bodies are surrounded 

by 100% of the treated CoI. The NHD+ 

catchments selected for this analysis are 

sufficiently numerous for all the CoI and 

regions examined to permit meaningful 

distributional analysis. These catchments are 

generally small, reflecting a range of areas 

highly representative of farm-scale 

operations. They are also defined by flowing 

water bodies that form part of the stream 

network draining the entire nation and are 

frequently used for other regulatory water 

quality evaluations. The study used GIS to 

intersect the NHD+ catchment data with 

best-available US government spatial data 

on cropping. The area of each CoI identified 

was successfully cross-checked against other 

government agricultural survey information. 

EPA’s Spatial Aquatic Model (SAM, 

USEPA 2015d) (not yet released) also uses a 

drainage area as the unit of analysis (defined 

by a HUC-12) which, while somewhat 

larger than NHD+ catchments, utilizes a 

comparable approach to this study. CDL-

based crop footprints were developed and 

summarized at the HUC-12 level for use in 

subsequent aquatic modeling using SAM.   
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Table 2. 24-hour water column Multiplier Factors (MFs) as a result of applying catchment based PCA 

distributions to standard baseline scenarios 

  24-h Water Column 

  
50th Percentile 

MF 

90th Percentile 

MF 

PA alfalfa 88 20 

CA almond 5.7 1.9 

FL citrus 28 6.6 

IL corn 6.9 2.4 

IN corn 5.6 2.2 

MS cotton 170 8.3 

TX cotton 93 7.6 

OR grass seed 14 2.4 

CA lettuce 21 4.1 

NC peanut 108 10 

GA pecan 461 31 

FL pepper 564 49 

ID potato 107 8.0 

ME potato 426 37 

MS soybean 8.1 2.7 

ND sunflower 258 20 

OR sweetcorn 251 34 

ND wheat 24 18 

 

For the resulting populations of 

NHD+ catchments that had evidence of 

cropping, each CoI ranged from 

approximately 3,000 to over 750,000 

catchments. For each CoI, the GIS then 

generated distributions of PCAs in the 

stream proximity zones (10-200m) on either 

side of the stream reach. Due to the 

extensive sampling of relevant areas for 

each CoI in this study, the data are equally 

relevant to spatial distributions of crops 

around ponds and lakes. This is important 

since we have applied the catchment zonal 

cropping data to modeling conducted using 

the standard USEPA regulatory scenario 

representing local agriculture transporting 

pesticide mass flux to a small farm pond. A 

numerical simplification was made to 

combine the measured PCA distributions 

with the regular regulatory model output 

distribution using groups of PCAs in place 

of individual values. However the inherent 

assumption of using the maximum measured 

value for each group showed that the output 

remained highly conservative. Other 

assumptions and potential sources of 

uncertainty are discussed in the 

Supplemental Information. 

The catchment distributions 

indicated that for all crops 90% of the 
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catchments had a 10-200m PCA of 45% or 

less, while for six crops 90% of the 

catchments had a PZ PCA of less than 10%. 

Even at the 99th percentile (i.e., 99% of the 

catchments with CoI), all but two crops 

(almonds and corn) had less than 75% of the 

10-200m PZ cropped. However, this 

analysis identified that the screening 

scenario of 100% cropped occurred at least 

once (but not for more than 1% of the 

catchments) for all but two crops (peanuts in 

GA, FL and AL and peppers in FL). The 

extensive variability of catchment PCAs 

across all crops highlights the diversity of 

real-world agriculture and since the 

associated variability can now be accurately 

quantified, it should be incorporated into 

probabilistic refined exposure estimation 

using distributions. We have demonstrated 

one probabilistic application of these PCA 

distributions with the USEPA standard 

scenarios. However, PCA data are not 

limited to pesticide exposure and could be 

used to examine other environmental 

transport issues associated with specific CoI 

within a probabilistic framework (e.g., 

nutrient or sediment loadings to surface 

water).  

Scaling the influence of the PCA 

distributions as applied to pyrethroid 

modeling using the baseline scenarios, the 

resulting MFs show a range of reductions in 

estimated aquatic exposure which varied by 

CoI. The 90th percentile of maximum water 

body year EECs (the value used in the 

standard US regulatory screening approach 

equivalent to a 1-in-10 year event) for the 

water column was reduced by a minimum of 

1.88 (CA almonds) to almost 50-fold (FL 

pepper), with larger reductions for the 50th 

percentile water body year EECs (5 to over 

500 factor reductions). The incorporation of 

the 10-200m PZ PCA distributions has a 

marked effect on the aquatic exposure 

predictions. Nevertheless, the results do not 

negate the fact that settings equivalent to the 

standard regulatory screening assumption do 

exist. The maximum concentrations are 

essentially the same in both the PCA-

modified and standard distributions; however 

the estimated probability of these 

concentrations occurring is massively 

reduced. This indicates that the estimated 1-

in-10 year maximum water-body year 

exposure in the output distribution (the 

regulatory endpoint used in standard 

screening assessments) is reduced by 

between a factor of ~2 and 49 depending 

upon crop and the size of the region 

considered. Because the magnitude of the 

reduction varies significantly by crop, an 

important finding is that the ranking of 

potential risk by CoI changes when the real 

world PCA distributions are considered. This 

is exemplified in Table 3 which shows the 

relative rankings of these CoIs using baseline 

inputs compared to those modified by the 

PCA distribution. The baseline ranking in 

this table relates only to our implementation 

(i.e., including VFS requirements) applied to 

pyrethroids and is not a general ranking for 

all chemicals. The table also shows the 

potential regulatory significance of 

conducting refined exposure assessments that 

examine sources of uncertainty such as 

cropping proximity and density. The refined 

assessment might focus attention on a 

different use pattern (i.e., application to a 

specific crop) as deserving more regulatory 

attention. Comparable results for 21-day 
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TWA sediment rankings are provided in the 

SI (Figure S9 in Supplemental Information). 

  Our analysis has examined the 

impact of crop PCA in the 10-200m zones 

around streams. However, this analysis also 

generated three intermediate PCA datasets 

covering the 0-10, 10-50 and 50-200m PZs2. 

These datasets have other potential uses 

including assessing the risks and possible 

mitigation strategies for crop-specific 

nutrient or sediment transport to protect 

water quality.   

In a full probabilistic risk refinement, 

many other input parameter distributions 

would have been considered at the same time 

to replace the conservative, single-point 

values assumed for screening assessments. 

For example, see the effect of wind speed, 

temperature, and humidity on drift loads [8] 

and wind direction relative to water body [18, 

40]. The current study merely demonstrates 

the effect of one of the more important 

drivers of transport to aquatic systems.  More 

detailed evaluations of potential sources of 

uncertainty have been developed [14]. 

Conclusions 

The use of publicly available 

national-scale spatial data on hydrology and 

cropping allowed for an extensive analysis of 

crop-specific PCA distributions as a 

refinement for regulatory exposure modeling 

for pesticides. The large number of 

catchments and their representative size for 

local farming practices make NHD+ an ideal 

framework to examine national level 

                                                           
2 These data were not specifically used in this work 
and are therefore not be included in the SI.  Contact 
corresponding author for data request. 

exposure. The temporally and spatially 

leveraged location data in the CDL for a wide 

range of crops provide a basis for examining 

crop occurrence and density associated with 

hydrologic, soil, or slope data. Combining 

crop information with surface water 

proximity at the catchment level produced 

measured crop PCA distributions for the 

areas most likely to lead to potential pesticide 

exposure to flowing waters.   

 The current work builds upon 

methodologies previously reported to 

characterize spatial proximity of cropped 

areas to aquatic or terrestrial areas of interest 

[6, 10, 18, 40, 68] by extending the spatial 

extent to a national scale. An innovative 

approach was used to refine baseline model 

output distributions (30 individual annual 

maxima) by probabilistically applying crop 

density adjacent to stream segments (the 10-

200m PZs on either side) using measured 

distributions derived from GIS analyses. This 

resulted in a distribution of 300 water body 

year EECs. This analysis confirms that the 

refined output maxima match the baseline 

scenario EECs, however incorporating the 

measured adjacent PCA distributions 

contextualizes their probabilities of 

occurrence.  

The study shows that for most crops 

only a small fraction of water bodies are 

surrounded by 100% of the CoI. This is in 

contrast to the default USEPA pesticide 

assessment screening-level conceptual model 

where this is assumed to occur for every 

waterbody. This dramatically reduces the 
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probability of occurrence of higher predicted 

exposures. Consequently, when the PCA 

refinement is considered, the 1-in-10 year 

model output endpoint that the USEPA uses 

as an aquatic level of concern [61] is reduced 

by a factor of between 1.9 and ~50 

(depending upon crop). 

 

Table 3. Ranking of crop scenarios for a representative pyrethroid showing 24-hour water column EECs 

(ranked from highest to lowest 90th percentile) comparing baseline approaches with results obtained by 

considering the impact of PCA in the 10-200m PZ (CADA). 

  24-hour Water Column 

Rank Baseline CADA 

1 (highest) MS cotton CA almond 

2 TX cotton IL corn 

3 CA lettuce IN corn 

4 GA pecan MS soybean 

5 ND sunflower CA lettuce 

6 CA almond OR grass seed 

7 OR sweet corn MS cotton 

8 IL corn TX cotton 

9 FL pepper ID potato 

10 IN corn NC peanut 

11 NC peanut ND sunflower 

12 ID potato ND wheat 

13 ME potato GA pecan 

14 MS soybean OR sweet corn 

15 OR grass seed ME potato 

16 ND wheat FL pepper 

17 PA alfalfa PA alfalfa 

18 (lowest) FL citrus FL citrus 

 

Importantly, the variability of crop-

specific 1-in-10 year EEC reductions 

resulting from different crop-specific PCA 

distributions changes the ranking of the 

potential for different crops to contribute 

pesticide loadings to aquatic ecosystems. 

This indicates that crop-specific PCA data 

(currently not used in USEPA ecological 

assessments) are an important variable to 

consider when determining real-world 

priorities for pesticide mitigation strategies.  

The crop-specific catchment PCA 

data generated as part of this study can 

potentially be used in other contexts 

including assessing the risks and possible 

mitigation strategies for crop-specific 

nutrient or sediment transport to protect 

water quality. The catchment cropping data 

generated as part of this study were also 

combined with spatial data on soils and 

weather and used in an examination to place 

the USEPA scenarios into a national context 
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of catchment-scale off-field transport of 

pyrethroid mass [31]. Alternatively, if other 

spatial datasets are combined (e.g., data 

layers classified by non-crop types like trees 

and brush), analyses similar to those used for 

cotton in Yazoo County, MS [18] could be 

conducted to understand the spatial 

arrangement of crops, non-crops, and water 

bodies and the resulting impacts on pesticide 

drift potential. Moreover, because these crop 

specific results use catchment boundaries 

from the NHD+ framework, these data and 

any associated findings can readily be 

associated with the hundreds of other 

catchment metrics (e.g., Streamcat) and 

NHD+ applications (See EPA Website) 

currently available. 

Highlights 

 A US-wide spatially explicit analysis 

of crop density and proximity to 

surface waters was developed to 

characterize the potential for 

pyrethroid insecticides to enter 

flowing waters 

 Cropping and hydrology datasets 

were employed at the catchment-

scale across the full extent of 

agricultural production in the US 

ranging from 3,000 to more than 

750,000 catchments depending on the 

crop of interest 

 Crop-specific probabilistic 

distributions describing the extent 

and proximity of each crop to the 

flowing water body were used to 

refine estimated environmental 

concentrations using USEPA 

standard regulatory scenarios  

 Results showed that, while potential 

maximal aquatic exposure 

concentrations are unchanged, the 

probability of exceeding regulatory 

decision-making concentration 

endpoints is much lower than 

predicted by standard assumptions 

(e.g., 1.9 to ~50-fold reductions by 

crop for 90% of catchments) 

 The relative ranking of crops by their 

aquatic pesticide exposure potential 

may change when cropping density 

and proximity are considered 
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