

Comprehensive characterization of agricultural proximity to surface water in France

Christopher M. Holmes and Logan Insinga
Paul Sweeney and Dave Johnson
Ludovic Loiseau

Applied Analysis Solutions, Virginia, USA Syngenta, Jeallot's Hill, Bracknell, UK

Syngenta AG, Basel, CH

Introduction

- Regulatory exposure modeling for pesticides relies heavily on hypothetical scenarios for landscape variability
- Proximity is an important factor to potential aquatic exposure from agricultural application of pesticides
- Characterizing proximity 'in total' allows for reduced
 uncertainty regarding off-field pesticide transport
- High resolution cropping and hydrographic data used to characterize agricultural proximity across the country and discern regional variations

Cropping and hydrographic data for France

Agricultural parcels

- Registre parcellaire graphique (RPG)
- Developed to support common agricultural policy (CAP)
- 28 crop groups and over 200 individual crops
- 9.4 million parcels
- 8ooK parcels - maize
- 431K parcels - winter cereals (barley, oats, rye, triticale)

Surface water

- BDTOPO hydrology
- Flowing and static water bodies
- 2.7 million line features
- 0.9 million area features
- Attributes
- Permanence
- Nature
- Size

Characterizing proximity to agriculture

- Determine portion of agricultural fields near surface water
- i.e., the portion of crop that might impact surface water via off-field drift transport
- Distances of interest vary
- Quantitative measurements in Geographic Information Systems (GIS) based on spatial datasets
- Three methods explored to assess proximity

Proximity: Binary Method

- If any portion of the maize parcel is within the proximity distance, the entire maize parcel area is considered "impacted"
- Most conservative since the entire parcel is considered impacted, regardless of what fraction is within the proximity distance

Proximity: Buffer Method

- Only the portion of the maize parcel that directly overlaps the proximity distance is impacted
- Least conservative since only the direct overlap area is considered impacted

Proximity:Threshold Method

- Hybrid between the Binary and Buffer Method
- If a specified percentage of the maize parcel (i.e., the 'threshold') falls inside the proximity distance, the entire parcel is considered impacted (i.e., Binary Method)
- Otherwise, only the direct parcel area with the proximity distance is considered impacted (i.e., Buffer Method)

France maize and winter cereals production

Binary Method results

Buffer Method results

Proximity Distance (m)	Winter Cereals in Buffer (ha)	\% FR Winter Cereals in Buffer	
10	8,851	0.5\%	
20	27,004	1.6\%	of Franc
30	48,690	2.9\%	Winter Cereals $\square \leq 3 \%$
40	71,524	4.3\%	
50	97,148	5.8\%	$\square \leq 15 \%$

Threshold Method results

- Percentage of crop area impacted based on threshold
- If a 10\% threshold is applied to the 3om proximity distance, 20% of the total maize area would be impacted
- If a 25% threshold is applied to the same proximity distance, 8.3\% of the total maize area would be impacted

Threshold Method results contains information on all three methods

- The Binary Method is equivalent to a threshold of o\% (i.e., any portion of the parcel within proximity)
- Left side of the chart (x -axis $=0 \%$)
- The Buffer Method is equivalent to a threshold of 100% (i.e., 100% of the parcel is within proximity)
- Right side of the chart (x-axis $=100 \%$)
- The Buffer Method is the minimum amount of maize impacted by a specific proximity distance
- Therefore, the plot does not reach 0% maize impacted on the right side of the x-axis

Threshold Method results - compare maize and winter cereals

Scalability

\% of FR winter cereals (13.8\%)

- France : Region : Department
- Crop level
- Surface water type (e.g., only permanent water)

Buffer Method - Percent of Winter Cereals in Proximity Grand Est Department Level (NUTS3)

Threshold Method - Winter Cereals

Processing and automation

- Due to limitations in ArcGIS software, processing primarily performed at the Department level
- Automation using models in ArcGIS
- Chain functions together and iterate through spatial units in a controlled, reproducible and recorded manner
 and chart results


```
    df_in = df_in.sort_values(by = [.PCt_of_parcep '],ascending=Faise) #sort dataframe by parcel
    arr_in = df_in.to_numpy() #convert to numpy array
    print ('Number of initial records in table:', len(arr_in)
    #row_mask=arr_in[:1]==0/ np.logical_and(arr_in[{,1]== 1, arr_in[:5] == 1) # create a
    lol
    A_tot = np.sum(arr_new[:,3])/10000 #calculate total area using SUM_Shape_Area (polygon areas)
    perc_prox = 1-arr_new[:,5] #calculate percent of parcel within buffer. subtract pct parcel f
    ha_prox = perc_prox arr new[:,4] #calculate area within buffer in ha
    lol
    perc_dist = ha_dist / A_tot #calculate the percentage of total distant crop Python
    print('Total Parcel Area Within Buffer:',', np.sum(ha_prox)),

\section*{Summary}
- This study demonstrates the viability of parcel-level proximity analyses across mainland France

- Applicable to other crop types and time periods
- The ability to subgroup results by administrative unit allows for further exploration and initial evaluation of factors relevant to crop proximity
- Further investigation into parcel proximity to surface water: landscape and anthropogenic factors



ChrisHolmes@AppliedAnalysis.solutions
https://AppliedAnalysis.solutions/

APPLIED ANALYSIS
SOLUTIONS LLC```

