Sources, characteristics and opportunities for pesticide use and usage information applied to listed species risk assessment

Christopher M. Holmes - Applied Analysis Solutions LLC
Joshua Amos, Nathan Snyder and Matt Kern - Waterborne Environmental, Inc.
James Cowles and Kevin Henry - NovaSource / Tessenderlo Kerley, Inc.

Introduction

nse challenge in national-level pesticide endangered species risk and incorporation of pesticide
Pesticide "usage" differs from pesticide "use",
"Use" is defined by registered labels and describes limits on how the pesticide may be applied (i.e., maximum rates and number of applications)
"Usage" describes documented applications with specific information How we can utilize pesticide usage data to help inform our understanding of potential exposure?
Our goals :
Account for variability in pesticide usage practices for which we have information
Address unce
Must be applicable nation definitions
Transparent and robust (i.e., configurable)
ultimately lead to improved risk assessment

1. Pesticide Usage Data

USDA NASS Agricultural

 Chemical Use Survey\qquad Selected percentiles of reported applicatio rate (per application) distribution for Carbarrl lapplied to apples from 2007-2013
for all program statas combined. The maximum application rate listed on the

Each use site is assigned an index relating it to maximum usage (per acre) Usage Index = Lbs_Applied ${ }_{\text {probabilistic }} /$ Lbs_Applied $_{\text {max }}$ Where: Lbs Applied ${ }_{\text {probabilstic }}=$ App Rate prabilictic * Annual \% Field Treated

Lbs_Applied $_{\max }=$ Label_Rate $_{\max }{ }^{*}\left(100 \%\right.$ _Field_Treated * Annual_Applications $\left.{ }_{\text {max }}\right)$

2. Probabilistic Simulation - Visualization

Single trial showing spatial distribution of treated fields and off-field drift areas

Variability in usage intensity

2. Probabilistic Simulation

A simulation consists of multiple trials (e.g., 1000) in which inputs are selected randomly based on probability, and each trial represents on possible instance. By running many trials, the range of possible outcomes is defined, as well as the most probable outcomes.

3. Verification and Validation

900 of the 1000 trials in the simulation indicated that, of the area receiving applications in the species range, 50% has 13% or less the maximum usage from screening level exposure modeling

Each trial in the simulation resulted in total acres treated betwe estimated from an independent source.

Conclusions

Real world pesticide usage data can help inform potential exposure for listed species risk assessmen

- Approach presented here is applicable with a variety of sources for pesticicide use sites; national USDA Cropland Data Layer and state-level - The Usage Index concept normalizes simulation results to a reference (e.g., screening level use)
- Approach leverages known variability in pesticide usage data and agronomic practices
- Addresses uncertainty about which fields are treated (and to what degree) related to species range location
- Provides context for exposure based on pounds applied and spatial distribution of use sites within species range

[^0]
[^0]:
 https://www.nass.usda.gov/Surveys/Guide to NASS Surveys/Chemical Use/ 2. https:///www.cdpr.ca.gov/docs//pur/purmain.htm

