Tiers for Fears

Applying Fit-for-Purpose Risk Assessment in Environmental Stewardship

Product Stewardship 2019

Session Overview

Paul DeLeo, Integral Consulting Tiered environmental risk assessment – Why and How

Chris Holmes, Applied Analysis Solutions Environmental fate and exposure assessment in detail

Kevin Kransler, SI Group Supplier Perspective: Screening-level tools to identify portfolio risk

Andrea Carrao, Kao USA User Perspective: High-throughput screening of portfolio

Part 2 – "Ruling the world" one tier at a time

Christopher Holmes

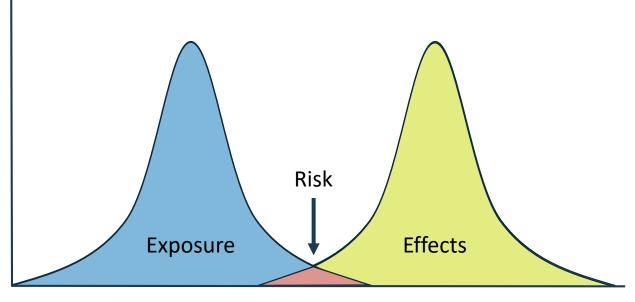
Applied Analysis Solutions, LLC

https://AppliedAnalysis.solutions

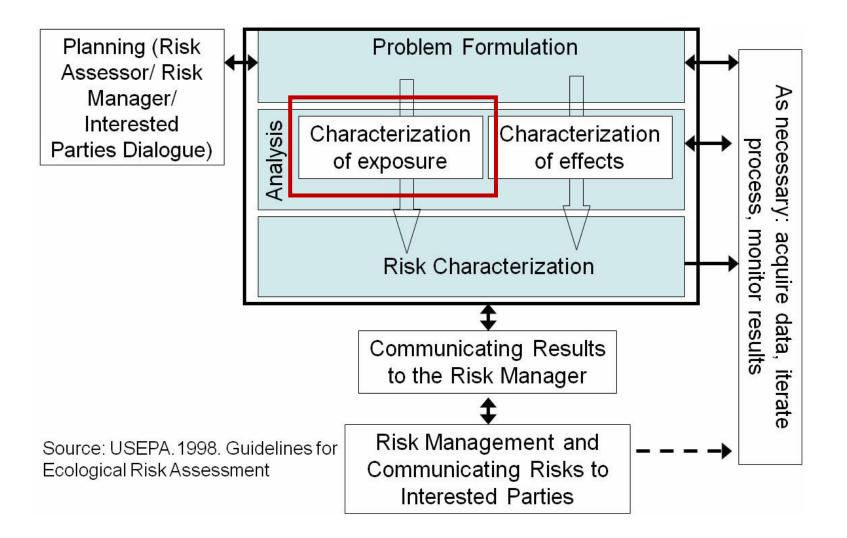
Product Stewardship 2019

Introduction

Product stewardship includes understanding & managing the potential for your product to enter the environment


So many ingredients, so much to know, so little time ... But don't <u>fear</u>, tools are available to help you efficiently apply your energy to the areas that contribute the most and achieve your needs

Product Stewardship 2019

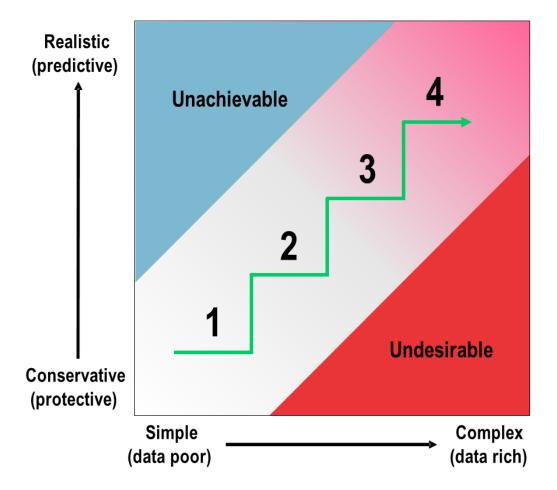

Risk

- Comparing toxicity information and the amount of a substance an organism may be exposed to in the environment
- A substance can be toxic at one exposure level, and have little or no effect at another
- Risk is the intersection of exposure and effects
- Environmental exposure may have a temporal and/or geospatial component

Risk assessment

Product Stewardship 2019

Tiered approach


Tiered system efficiently allocates resources

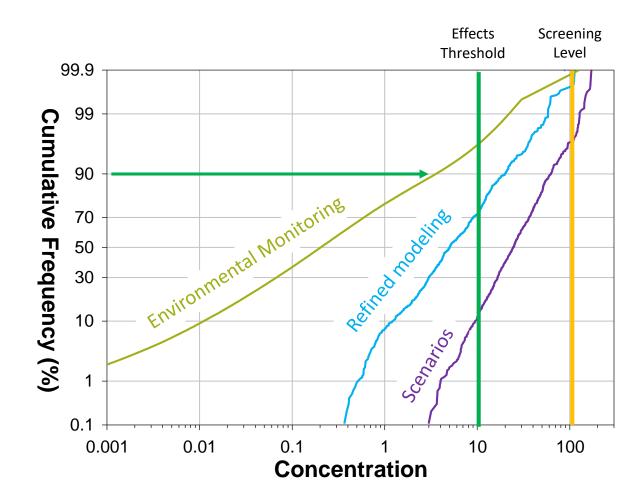
Lower tiers use conservative assumptions to screen out negligible risks

When a substance is not predicted to cause adverse effects at the screening-level

 possibility of harming the environment is low and use is accepted

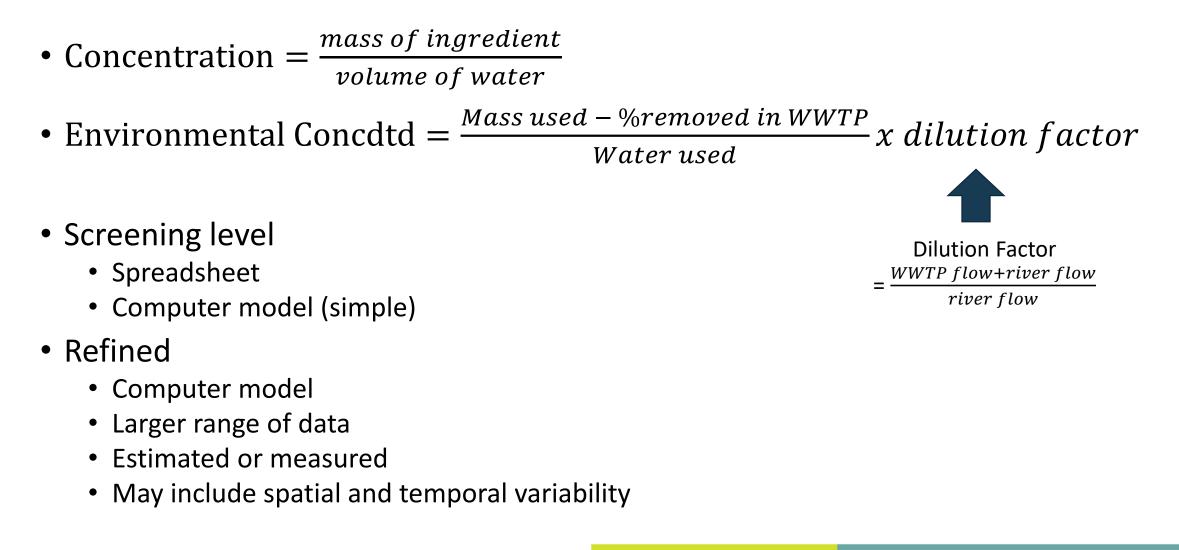
Failing a lower tier indicates further refinement is needed

Adapted from K. Woodburn, Dow Performance Silicones


Exposure estimation

Lower tier (deterministic)

- Uses single values to make a determination
 - Risk Quotient (RQ) = exposure / toxicity
 - Toxicity Exposure Ratio (TER) : No Effect Concentration / exposure
- Results in a "bright line" = pass or fail


Higher tier (probabilistic)

- Accounts for variability
- Progressive refinement
- Distribution of results

Estimating aquatic environmental concentrations

Lower tier exposure models

- Simple models utilizing idealized scenarios and conservative assumptions
- Easy to use, appropriate for screening
- Exposure and Fate Assessment Screening Tool (E-FAST)
 - General population and aquatic ecological exposure and risk
 - Environmental releases to air, surface water, landfills, and by consumer products
 - EPA <u>https://www.epa.gov/tsca-screening-tools/e-fast-exposure-and-fate-assessment-screening-tool-version-2014</u>
- European Union System for the Evaluation of Substances (EUSES)
 - Assess general risks posed by chemical substances
 - EC: <u>https://ec.europa.eu/jrc/en/scientific-tool/european-union-system-evaluation-substances</u>

Exposure and Fate Assessment Screening Tool

- Ecological exposure from "down the drain" emissions
- User supplies total annual emissions and WWTP removal
- Assumed even distribution of use and emission across entire population
 - Built in:
 - Per capita water use
 - Environmental dilution factor

Product Stewardship 2019

Exposure and Fate Assessment Screening Tool

- E-FAST is a screening level model with conservative assumptions
 - Assumes no stream dilution for ecological exposure
 - Considers only mixing zone concentration (no downstream attenuation)
 - Does not consider potential upstream sources
 - Does include variable dilution in Probabilistic Dilution Model (PDM)

Descriptor	Use	10 th -percentile Stream Dilution Factor
7Q10 (lowest 7-day flow over 10 years)	Potential chronic aquatic life impacts	1.00
1Q10 (lowest 1-day flow over 10 years)	Potential acute aquatic life impacts	1.00
30Q5 (lowest 30-day flow over 5 years)	Acute human exposure via drinking water	1.80
Harmonic Mean Flow	Chronic human exposure via drinking water and fish ingestion	7.95

Higher tier exposure models

- More sophisticated estimation of exposure
- Requires more information on:
 - Usage / emissions
 - Fate
 - Transport
- EPA help Using Predictive Methods to Assess Exposure and Fate under TSCA
 - EPA's fate and exposure models and tools

Environmental Topics	Laws & Regulations	About EPA	Search EPA.gov
Related Topics: Predictive M	Iodels and Tools for Assessi	ng Chemicals under the Tox	tic Substances Control Act (TSCA) CONTACT
			SHARE (f) (P) (
Using Pred	lictive Me	thods to A	ssess Exposure
and Fate u			•
On this page:			
 Information these models p 	rovide		
How and when to use the m			
 <u>Use considerations: monito</u> EPA's fate and exposure monitor 			
Fate and exposure guidance			
Information	haaa madala	an provida	
Information t	nese moders	call provide	
An exposure assessment attem	npts to answer the following	questions for a particular sub	ostance or chemical:
How much of the chemical v	will workers be exposed to d	uring the manufacturing, proc	cessing, and use of the substance?
			, processing, and use of the substance?
 What environmental pathwas surfaces, outdoor air, drinki 	, , , ,	opulation and environmenta	Il exposure? (indoor air, indoor dust, indoor
What routes of human expo		n, ingestion, dermal, fetal)	
And also:			
	eeded to characterize expos	ure? (breathing rates, drinking	g water ingestion rates, skin contact surface area,
body weight, etc)?	ly-state conditions or do the	change over time? How mu	ch exposure occurs over time (acute sub shropis
Do ovposuros ossuria stand	iy-state conditions or do they	r change over unter HOW MU	en exposure occurs over ume (acute, SUD-Chronic
 Do exposures occur in stead or chronic)? 			
	s influence exposures? (How	often and for how long does e	exposure occur)?
or chronic)? • Do relevant activity patterns • What is the fate of a chemic	al once in the environment a	nd how is the chemical transp	

https://www.epa.gov/tsca-screening-tools/using-predictive-methods-assess-exposure-and-fate-under-tsca

Product Stewardship 2019

Determining refined usage and emissions

- Market survey data
 - Capture variability in product purchase / usage
 - E.g., Mintel, Euromonitor
- Scenario Assembly Tool (ScenAT) Unilever
 - Combines market data and population ability to purchase products based on GDP
 - Spatial differentiation within and between countries
 - Models ingredient used across multiple products

Hodges JE, Holmes CM, Vamshi R, Mao D, Price OR. 2012. Estimating chemical emissions from home and personal care products in China. Environ Pollution. 165:199–207

Product Stewardship 2019

b	#	GDP Threshold	Example product
	7	Very High	Machine Dishwash
	6	High	Deodorants
	5	Medium High	Conditioner
4		Medium	Shampoo
	3	Medium Low	Toothpaste
	2	Low	Bar Soap
	1	Very Low	-

Figure 1 from Hodges et al (2012) HPC products aligned with different GDP threshold bands.

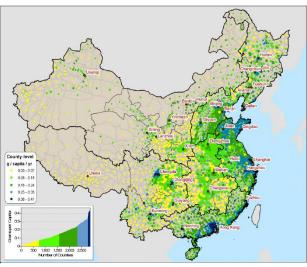
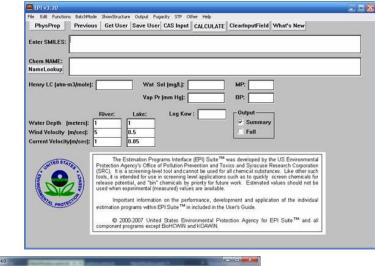



Figure 6 from Hodges et al (2012) Distribution of hypothetical chemical used in multiple product types across China.

Methods to refine fate estimation

- Laboratory studies
- EPI Suite™
 - Provides estimates of physical/chemical and environmental fate properties
 - Multiple programs / modules
 - EPA: <u>https://www.epa.gov/tsca-screening-tools/epi-suitetm-estimation-program-interface</u>
- SimpleTreat
 - Assess fate of substances in waste water treatment plants
 - Considers volatilization, mixing, adsorption and degradation
 - RIVM: <u>https://www.rivm.nl/en/soil-and-water/simpletreat</u>
- EPA Point Source Calculator (VVWM-PSC)
 - Refined environmental fate in aquatic systems
 - Concentrations in water column, porewater, and sediment
 - Based on pesticide model (Variable Volume Water Model)
 - EPA: <u>https://www.epa.gov/tsca-screening-tools/point-source-calculator-version-105-psc-v105</u>

Edit Calculation mode Export Help		
stance Mode of operation Biodegradation Emission scenario	Distribution Elimination Concentrations	
acility type		
Municipal O Industrial	Reset values to default	
Operation mode		
Include primary solids removal (default) No primary	solids removal 🔘	
Sewage flow (Q)	0.2 m ³ d ⁻¹ PE ⁻¹	
Mass of sewage solids (SO)	0.09 kg d ⁻¹ PE ⁻¹	
Mass of O2 binding material in sewage (BOD)	60 kg O 2 d ⁻¹ PE ⁻¹	
Fraction of BOD in sewage solids (FB)	0.5417 -	
Fraction of sewage solids removed by primary sedimentation (FS)	0.67 -	
Sludge loading rate (kslr)	0.1 -	
pH	7 -	=
primary settler seration tank	solds liquid separator	
raw sewage 2010 settled sewage activated studge	effluent	Point Source Calculator (version 1.02): Calculations by the VVWM
		File Scenario Point Source Calculator
1	↑ I	Chemical Toxicity Scenario Results More Info
primary sludge		Chemical ID
Exced concentration suspended solids evaluation = variable concentration suspended solids		Sorption Coefficient (ml/g) Koc Koc
180 - variable concentration suspended solids	wasted sludge	Water Column Halflife (days) @ *C Photolysis Halflife (days) @ *Latitude
		Hydrolysis Halflife (days) @ *C
		Benthic Halflife (days) @ *C
		Volatilization
		No Volatilization Molecular Weight Vapor Pressure (torr)
		Estimate Henry's Const Solubility (mg/L)
		Use Henry's Const (atm m ⁴ /mol)
		Heat of Henry (J/mol)
		Reference Temp ("C)
		Mass Release Schedule
		Use Offset Days On Days Off Mass (kg/day)
		Use a Time Series File
		Use PRZM5 Output File
	· · ·	
		Working Directory:
	Produc	Working Directory: Outlie Family Name: RUN

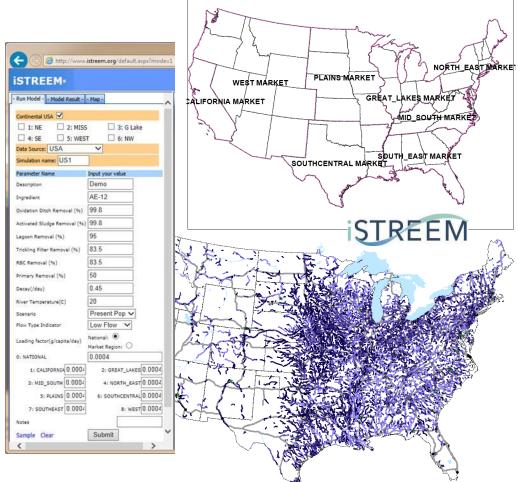
Product Stewardship 2019

Refined hydrologic transport

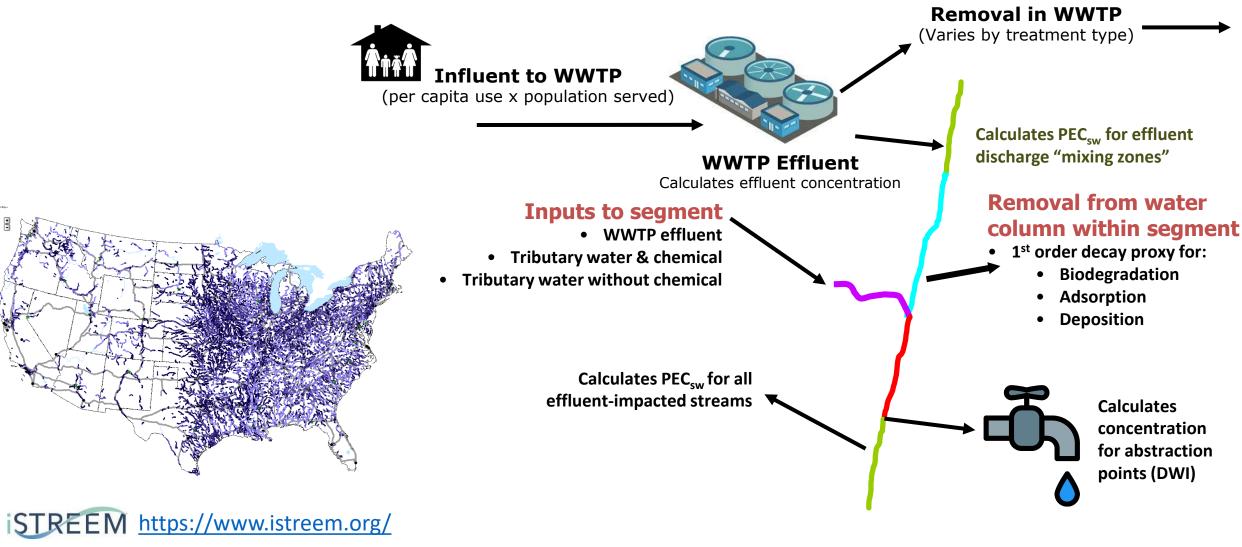
- Georeferenced emissions linked to river network with downstream transport
- In-STRream Environmental Exposure Model (iSTREEM[®]) <u>https://www.istreem.org/</u>
 - Web-enabled public model to predict concentrations of "down-the-drain" ingredients
 - Maintained by American Cleaning Institute (ACI)
- PhATE[®]
 - Proprietary model from Pharmaceutical Research and Manufacturers of America (PhRMA)
 - Point source emissions to rivers in 11 representative watersheds in US
- Geo-referenced Regional Exposure Assessment Tool for European Rivers (GREAT-ER) <u>http://cefic-lri.org/toolbox/great-er/</u>
 - Public model for 16 representative European watersheds
 - European Chemical Industry Council (CEFIC)

References:

iSTREEM - Kapo et al., 2016. iSTREEM[®]: An approach for broad-scale in-stream exposure assessment of "down-the-drain" chemicals. Integr Enviro Assess Manag 12:782-792 DOI: 10.1002/ieam.1793 PhATE - Anderson et al, 2004. Screening analysis of human pharmaceutical compounds in U.S. surface waters. Environ. Sci. Technol. 38, 838e849 GREAT-ER - Kehrein et al., 2015. Modeling the fate of down-the-drain chemicals in whole watersheds: new version of the GREAT-ER software. Environ. Model. Software 64, 1e8.

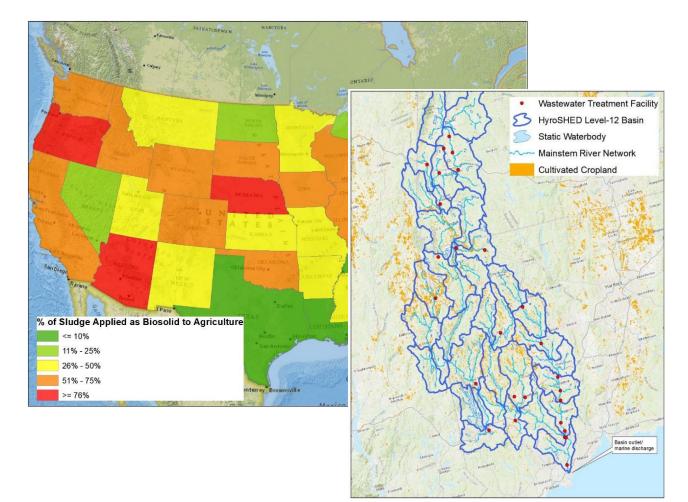

Product Stewardship 2019

Addressing all three aspects with iSTREEM®


- Usage / emissions
 - Product usage based on market region
 - Per capita water use specific to 12,000+ facilities based on EPA data¹
- Fate
 - WWTP removal assigned to 6 treatment types
 - In-river removal using first-order decay
- Environmental
 - Site specific dilution factors
 - Hydrologic transport for 300,000 river miles downstream of WWTPs²

¹US EPA Clean Watersheds Needs Survey – includes NPDES permit numbers, treatment type information, population data, effluent flow ²USGS/EPA National Hydrography Dataset Plus

Processing flow in iSTREEM®



Product Stewardship 2019

Sewage sludge and the terrestrial environment

- Not all substances removed during wastewater treatment are eliminated
- May be captured in WWTP solids
 - E.g., microplastics, metals
- Disposition of sludge depends on local and regional practices
 - May be land applied to soil
 - Potential for subsequent movement to surface water

Images from Holmes et al, 2018. Estimating environmental emissions and aquatic concentrations of sludge-bound CECs using spatial modeling and US datasets. SETAC NA 39th Annual Meeting. Sacramento, CA. Nov 2018 Biosolid data from U.S. and State-by-State, Biosolids Regulation, Quality, Treatment, and End Use and Disposal Data APPENDIX D. Version - FINAL - Part 1 of 2, December 31, 2007, https://www.nebiosolids.org/

Product Stewardship 2019

Final thoughts

"Nothing ever lasts forever" - Exposure and risk are episodic in time and place

Thank You for your attention

- Please ask questions now ...
- ... at the end of the session ...
- ... or follow up later

Chris Holmes Applied Analysis Solutions LLC <u>ChrisHolmes@AppliedAnalysis.solutions</u> (540) 252-0013 Online at: AppliedAnalysis.solutions

Tears for Fears, 1985 Songs from the Big Chair

- "Shout" and fill out the session evaluation via the mobile app!
 - Tiers for Fears: Applying fit-for-purpose risk assessment in environmental stewardship

